タグ「長さ」の検索結果

12ページ目:全1099問中111問~120問を表示)
自治医科大学 私立 自治医科大学 2016年 第15問
$\triangle \mathrm{ABC}$において,辺$\mathrm{BC}$を$1:2$に内分する点を$\mathrm{P}$,辺$\mathrm{CA}$を$2:3$に内分する点を$\mathrm{Q}$とする.線分$\mathrm{AP}$と線分$\mathrm{BQ}$の交点を$\mathrm{S}$とし,直線$\mathrm{CS}$と辺$\mathrm{AB}$の交点を$\mathrm{R}$とする.線分$\mathrm{AR}$の長さが線分$\mathrm{AB}$の長さの$m$倍となるとき,$4m$の値を求めよ.
青山学院大学 私立 青山学院大学 2016年 第2問
四角形$\mathrm{ABCD}$が円に内接しており,$4$辺の長さが
\[ \mathrm{AB}=2,\quad \mathrm{BC}=1,\quad \mathrm{CD}=\mathrm{DA}=\sqrt{6} \]
である.

(1)$\angle \mathrm{BAD}=\theta$とおくと,$\angle \mathrm{BCD}=\pi-\theta$であることから
\[ \mathrm{BD}=[$10$] \sqrt{[$11$]},\quad \cos \theta=\frac{\sqrt{[$12$]}}{[$13$][$14$]} \]
となる.さらに,$\overrightarrow{\mathrm{BA}}$と$\overrightarrow{\mathrm{BD}}$の内積は$\overrightarrow{\mathrm{BA}} \cdot \overrightarrow{\mathrm{BD}}=[$15$]$である.
(2)$\mathrm{E}$を$\mathrm{BE}$が直径となる円周上の点とすると,
\[ \overrightarrow{\mathrm{BA}} \cdot \overrightarrow{\mathrm{BE}}=[$16$],\quad \overrightarrow{\mathrm{BD}} \cdot \overrightarrow{\mathrm{BE}}=[$17$] \]
である.したがって,
\[ \overrightarrow{\mathrm{BE}}=\frac{[$18$]}{[$19$][$20$]} \overrightarrow{\mathrm{BA}}+\frac{[$21$][$22$]}{[$23$][$24$]} \overrightarrow{\mathrm{BD}} \]
である.
立教大学 私立 立教大学 2016年 第2問
座標平面上における放物線$C:y=x^2-2x+1$と直線$\ell:y=x$の$2$つの交点のうち,$x$座標の値が小さい方の点を$\mathrm{A}(p,\ p)$とする.直線$\ell$上の点$\mathrm{B}(1,\ 1)$と点$\mathrm{A}$の間にある点$\mathrm{D}(q,\ q)$を通り$y$軸と平行な直線と放物線$C$との交点を$\mathrm{E}$とし,点$\mathrm{E}$を通り$x$軸と平行な直線と放物線$C$とのもう$1$つの交点を$\mathrm{F}$とする.このとき,次の問いに答えよ.

(1)$p$の値を求めよ.
(2)$\mathrm{EF}$の長さを$q$を用いて表せ.
(3)三角形$\mathrm{DEF}$の面積を$q$を用いて表せ.
(4)点$\mathrm{D}$が線分$\mathrm{AB}$上を動くとき,三角形$\mathrm{DEF}$の面積が最大となる$q$の値を求めよ.
(5)$q$が$(4)$で求めた値であるときの三角形$\mathrm{DEF}$の面積を求めよ.
立教大学 私立 立教大学 2016年 第2問
図のように辺の長さが$a$と$b$である長方形があり,$ab=1$とする.この長方形の四隅から,一辺の長さが$\displaystyle c \left( 0<c<\frac{1}{2} \right)$の正方形を切り取り,残った部分を組み立ててできる直方体の容器の容積を$V$とする.このとき,次の問いに答えよ.
(図は省略)

(1)$\displaystyle 0<c<\frac{1}{2}$を満たす$c$に対して,$a$と$b$が変化するとき,$a$の値の範囲を$c$を用いて表せ.
(2)容積$V$を$a$と$c$を用いて表せ.
(3)$a$が$(1)$で求めた範囲にあるとき,$V$を最大にする$a$の値と,そのときの$V$の値を$c$を用いて表せ.
(4)$(3)$で求めた$V$の値を$c$の関数として$M(c)$で表す.このとき,$M(c)$を最大にする$c$の値と,そのときの$M(c)$の値を求めよ.
立教大学 私立 立教大学 2016年 第3問
$\mathrm{AB}=1$である三角形$\mathrm{OAB}$において,$\mathrm{OA}$を$1:3$に内分する点を$\mathrm{C}$,$\mathrm{OB}$を$1:1$に内分する点を$\mathrm{D}$,$\mathrm{AD}$と$\mathrm{BC}$の交点を$\mathrm{P}$とする.このとき,次の問いに答えよ.

(1)$\displaystyle \frac{\mathrm{AP}}{\mathrm{AD}}=t$とおくとき,$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$,$t$を用いて表せ.
(2)$(1)$で定めた$t$の値を求めよ.
(3)$\mathrm{OP}$と$\mathrm{AB}$との交点を$\mathrm{E}$とするとき,$\displaystyle \frac{\mathrm{AE}}{\mathrm{EB}}$を求めよ.
(4)$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}=0$,$\overrightarrow{\mathrm{OP}} \cdot \overrightarrow{\mathrm{AB}}=0$であるとき,$\mathrm{OA}$と$\mathrm{OB}$の長さを求めよ.
(5)$(4)$のとき,三角形$\mathrm{OAB}$に内接する円の半径$r$を求めよ.
自治医科大学 私立 自治医科大学 2016年 第24問
曲線$\displaystyle y=\frac{x^3}{3}+\frac{1}{4x} (1 \leqq x \leqq 2)$の長さを$L$とする.$\displaystyle \frac{72}{59}L$の値を求めよ.
明治大学 私立 明治大学 2016年 第4問
次の設問の$[ ]$に適当な数を入れなさい.

点$(4,\ 2,\ 7)$を通りベクトル$\overrightarrow{a}=(2,\ 1,\ 4)$に平行な直線を$\ell$,点$(2,\ 12,\ -5)$を通りベクトル$\overrightarrow{b}=(1,\ 3,\ -3)$に平行な直線を$m$とし,直線$\ell$上の点を$\mathrm{P}$,直線$m$上の点を$\mathrm{Q}$とする.線分$\mathrm{PQ}$が直線$\ell$および直線$m$と垂直であるとき,点$\mathrm{P}$の$x$座標は$[ ]$であり,線分$\mathrm{PQ}$の長さは$[ ]$である.
明治大学 私立 明治大学 2016年 第6問
次の設問の$[ ]$に適当な数を入れなさい.

$\triangle \mathrm{ABC}$において,$\mathrm{AB}=\sqrt{3}+1$,$\mathrm{BC}=2$,$\mathrm{CA}=\sqrt{6}$である.また,$\angle \mathrm{B}$の二等分線と辺$\mathrm{CA}$との交点を$\mathrm{D}$とする.

(1)$\cos A=[ ]$である.
(2)線分$\mathrm{AD}$の長さは$[ ]$である.
(3)線分$\mathrm{BD}$の長さは$[ ]$である.
(4)$\triangle \mathrm{ABC}$の外接円の半径は$[ ]$である.
(5)$\triangle \mathrm{ABC}$の内接円の半径は$[ ]$である.
同志社大学 私立 同志社大学 2016年 第1問
次の$[ ]$に適する数または式を記入せよ.

(1)$a$を実数とする.$3$辺の長さがそれぞれ$a-1,\ a,\ a+1$となる三角形が存在するとき,$a$の値の範囲は$[ア]$である.この三角形が鈍角三角形となる$a$の値の範囲は$[イ]$である.$a=[ウ]$のとき,$1$つの内角が$\displaystyle \frac{2\pi}{3}$となる三角形である.このとき三角形の外接円の半径は$[エ]$であり,内接円の半径は$[オ]$である.
(2)$k$を実数とし,$f(x)=x^4+kx^2+1$とおく.曲線$C_1:y=f(x)$の点$\mathrm{P}(1,\ f(1))$における接線$\ell$の方程式は$y=[カ]$である.直線$\ell$は,$k$の値によらず定点$([キ])$を通る.$k$の値の範囲が$[ク]$のとき,曲線$C_1$と直線$\ell$との共有点の個数は$3$となる.このとき,この$3$つの共有点を通る$3$次関数で定義される曲線のうち,$x^3$の係数が$1$である曲線$C_2$は$y=[ケ]$で表される.$k=-7$のとき,$\ell$と$C_2$で囲まれた$2$つの部分の面積の差の絶対値は$[コ]$である.
明治大学 私立 明治大学 2016年 第1問
$(1)$~$(5)$において,$\nagamaruA$,$\nagamaruB$,$\nagamaruC$の値の大小関係を調べ,最大のものと最小のものを答えよ.

(1)$\{1,\ 1,\ 2,\ 3,\ 4,\ 5,\ 6,\ 6,\ 6,\ 7\}$の,
$\nagamaruA$ 平均値 \qquad $\nagamaruB$ 中央値(メジアン) \quad $\nagamaruC$ 最頻値(モード)
(2)$\theta$が第$2$象限の角で,$\displaystyle \sin \theta=\frac{2}{3}$のとき,
$\displaystyle \nagamaruA \sin \left( \theta-\frac{\pi}{2} \right)$ \qquad $\nagamaruB \cos \theta$ \qquad $\nagamaruC \tan \theta$
(3)$\nagamaruA$ 半径$4$,面積$4 \pi$の扇形の弧の長さ
$\nagamaruB$ 半径$5$,中心角$\displaystyle \frac{\pi}{2}$の扇形の弧の長さ
$\nagamaruC$ 半径$6$,中心角${72}^\circ$の扇形の弧の長さ
(4)$2x^3+x^2-8x-3$を$x+2$で割ったときの商を$f(x)$としたとき,
$\nagamaruA f(0)$ \qquad $\nagamaruB f(1)$ \qquad $\nagamaruC f(2)$
(5)$f(x)=x^3-x^2-5x+5$のとき,
$\displaystyle \nagamaruA f \left( -\frac{2236}{1001} \right)$ \qquad $\displaystyle \nagamaruB f \left( \frac{98}{299} \right)$ \qquad $\displaystyle \nagamaruC f\left( \frac{502}{301} \right)$
スポンサーリンク

「長さ」とは・・・

 まだこのタグの説明は執筆されていません。