タグ「配置」の検索結果

1ページ目:全16問中1問~10問を表示)
島根大学 国立 島根大学 2016年 第1問
$n$を自然数とする.下図のように,$3$本の平行な道路$\ell_1$,$\ell_2$,$\ell_3$があり,$\ell_1,\ \ell_2$をつなぐ縦の道と,$\ell_2,\ \ell_3$をつなぐ縦の道がそれぞれ$n$本ずつ,交互に配置されているとする.
(図は省略)
次の規則に従い図の$\mathrm{X}$から出発して$\mathrm{P}_n$,$\mathrm{Q}_n$,$\mathrm{R}_n$に到達する経路の個数をそれぞれ$a_n$,$b_n$,$c_n$とする.


\mon[(規則)] $\ell_1$,$\ell_2$,$\ell_3$は一方通行であり,西方向には進むことができない.また,一度通った縦の道を再び通ることもできない.

次の問いに答えよ.

(1)$a_2,\ b_2$を求めよ.
(2)$a_{n+1}$を$a_n,\ b_n$を用いて表せ.
(3)$b_n=c_n$が成り立つことを証明せよ.
(4)$a_1,\ b_1,\ a_2,\ b_2,\ \cdots,\ a_k,\ b_k,\ \cdots$と順に並べてできる数列を$\{f_n\} (n=1,\ 2,\ 3,\ \cdots)$とする.$f_{n+2}$を$f_n$,$f_{n+1}$を用いて表せ.また,それを用いて$a_7$を求めよ.
慶應義塾大学 私立 慶應義塾大学 2016年 第1問
\begin{mawarikomi}{36mm}{
\begin{zahyou*}[ul=1mm](-5,30)(0,35)
\def\C{(0,0)}%
\Drawline{(0,0)(30,0)}%
\Drawline{(0,10)(30,10)}%
\Drawline{(0,20)(30,20)}%
\Drawline{(0,30)(30,30)}%
\Drawline{(0,0)(0,30)}%
\Drawline{(10,0)(10,30)}%
\Drawline{(20,0)(20,30)}%
\Drawline{(30,0)(30,30)}%
\tenretu*{A(10,-13.75);B(10,13.75);C(-17,0)}%
\tenretu*{A(10,13.75);B(17,0);C(-17,0)}%
\emathPut{(0,35)}{例:$4 \times 4$の場合}
\Kuromaru[8pt]{(10,0)}
\Kuromaru[8pt]{(0,20)}
\Kuromaru[8pt]{(20,20)}
\Kuromaru[8pt]{(20,30)}
\tenretu*{A(-17,0);B(17,0)}%
\end{zahyou*}
}
座標平面の格子点$\{(i,\ j) \;|\; 1 \leqq i \leqq n,\ 1 \leqq j \leqq n \}$に$n$個の碁石を置く.ここで,$n$は正の整数とする.ただし,これらの碁石は同じ種類であり,互いに区別できない.また,格子点には高々$1$つの碁石しか置けないものとする.各$i$に対して,$\{(i,\ j) \;|\; 1 \leqq j \leqq n \}$を第$i$列,各$j$に対して$\{(i,\ j) \;|\; 1 \leqq i \leqq n \}$を第$j$行と呼ぶ.
\end{mawarikomi}

(1)$n$個の碁石を置くすべての場合の配置の総数を$A_n$とすると
\[ A_1=1, A_2=6, A_3=[$1$][$2$], A_4=\kakkofour{$3$}{$4$}{$5$}{$6$}, \cdots \]
である.
(2)$n$個の碁石を置くとき,どの行およびどの列にも$1$個の碁石を置く場合の配置の総数を$B_n$とすると
\[ B_1=1, B_2=2, B_3=[$7$][$8$], B_4=\kakkofour{$9$}{$10$}{$11$}{$12$}, \cdots \]
である.
(3)$n$個の碁石を置くとき,どの行およびどの列にも高々$2$個の碁石を置く場合の配置の総数を$C_n$とすると
\[ C_1=1, C_2=6, C_3=[$13$][$14$], C_4=\kakkofour{$15$}{$16$}{$17$}{$18$}, \cdots \]
である.
弘前大学 国立 弘前大学 2015年 第2問
男子$4$人と女子$4$人を円形のテーブルのまわりに無作為に配置する.次の問いに答えよ.

(1)男女が交互に並ぶ配置になる確率を求めよ.
(2)この配置を$3$回行うとき,男女が交互に並ぶ配置になる回数が$1$回または$2$回になる確率を求めよ.
豊橋技術科学大学 国立 豊橋技術科学大学 2015年 第2問
図$1$が示すように,平面上に互いに異なる$5$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$がある.ただし,$\mathrm{O}$は原点であり,他の$4$点の位置ベクトルを$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{OB}}$,$\overrightarrow{c}=\overrightarrow{\mathrm{OC}}$,$\overrightarrow{d}=\overrightarrow{\mathrm{OD}}$とする.媒介変数$t (0 \leqq t \leqq 1)$を用いて,線分$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CD}$を$t:1-t$に内分する点をそれぞれ$\mathrm{E}$,$\mathrm{F}$,$\mathrm{G}$とする.同様に,線分$\mathrm{EF}$,$\mathrm{FG}$を$t:1-t$に内分する点をそれぞれ$\mathrm{H}$,$\mathrm{I}$とする.さらに,線分$\mathrm{HI}$を$t:1-t$に内分する点を$\mathrm{J}$とし,$t$が$0$から$1$まで変化するときの点$\mathrm{J}$の軌跡を曲線$K$とする(図$1$参照).以下の問いに答えよ.
(図は省略)

(1)$\overrightarrow{a},\ \overrightarrow{b}$および$t$を用いて位置ベクトル$\overrightarrow{\mathrm{OE}}$を表せ.
(2)$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c},\ \overrightarrow{d}$および$t$を用いて位置ベクトル$\overrightarrow{\mathrm{OJ}}$を表せ.
(3)特殊な条件として,一辺が$r$の正方形上に図$2$に示すように点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$を配置する.さらに,中心が$\mathrm{O}$で端点を$\mathrm{A}$,$\mathrm{D}$とする円弧を$L$とする.線分$\mathrm{AB}$と線分$\mathrm{CD}$の長さはともに半径$r$の$s$倍($0 \leqq s \leqq 1$)である.このとき,$\overrightarrow{a}$,$\overrightarrow{d}$および$s$を用いてベクトル$\overrightarrow{\mathrm{AB}}$,$\overrightarrow{b}$,$\overrightarrow{c}$を表せ.
(4)$(3)$において,$\displaystyle t=\frac{1}{2}$のときの点$\mathrm{J}$に対応する点を特に点$\mathrm{M}$とするとき,点$\mathrm{M}$が円弧$L$上にあるための条件を$s$の値で示せ.
慶應義塾大学 私立 慶應義塾大学 2015年 第2問
半径$1$の円周上に$8$個の点があり,それぞれの点は隣り合う点とすべて等間隔に配置されている.それらの点には,反時計回りに$1$から$8$までの番号が順番についている.また,中の見えない袋の中に,$8$個の球が入っていて,それらの球には,$1$から$8$の番号が$1$つずつ書かれている.

(1)袋から同時に$3$つの球を取り出すとき,取り出した球と同じ番号のついた円周上の$3$点を頂点とする三角形の作り方は,全部で$[$17$][$18$]$通りある.このとき,作られた三角形の面積と,その面積が得られる確率の一覧表を作ることができる.以下の表を,上から下に面積の小さい順に並べて完成させなさい.

\begin{tabular}{cl}
\hline
面積 & 確率 \\ \hline
\phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{2}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} $\displaystyle\frac{\sqrt{[$19$]}-[$20$]}{[$21$]}$ & $\displaystyle\frac{[$22$]}{[$23$]}$ \phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{\displaystyle\frac{2}{2}}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} \\ \hline
\phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{2}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} $\displaystyle\frac{[$24$]}{[$25$]}$ & $\displaystyle\frac{[$26$]}{[$27$]}$ \phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{\displaystyle\frac{2}{2}}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} \\ \hline
\phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{2}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} $\displaystyle\frac{\sqrt{[$28$]}}{[$29$]}$ & $\displaystyle\frac{[$30$]}{[$31$]}$ \phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{\displaystyle\frac{2}{2}}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} \\ \hline
\phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{2}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} $[$32$]$ & $\displaystyle\frac{[$33$]}{[$34$]}$ \phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{\displaystyle\frac{2}{2}}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} \\ \hline
\phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{2}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} $\displaystyle\frac{\sqrt{[$35$]}+[$36$]}{[$37$]}$ & $\displaystyle\frac{[$38$]}{[$39$]}$ \phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{\displaystyle\frac{2}{2}}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} \\ \hline
\end{tabular}


(2)袋から同時に$4$つの球を取り出すとき,取り出した球と同じ番号のついた円周上の$4$点を頂点とする四角形の作り方は,全部で$[$40$][$41$]$通りある.このとき,作られた四角形の面積と,その面積が得られる確率の一覧表を作ることができる.以下の表を,上から下に面積の小さい順に並べて完成させなさい.

\begin{tabular}{cl}
\hline
面積 & 確率 \\ \hline
\phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{2}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} $\displaystyle\frac{\sqrt{[$42$]}}{[$43$]}$ & $\displaystyle\frac{[$44$]}{[$45$][$46$]}$ \phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{\displaystyle\frac{2}{2}}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} \\ \hline
\phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{2}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} $\displaystyle\frac{\sqrt{[$47$]}+[$48$]}{[$49$]}$ & $\displaystyle\frac{[$50$][$51$]}{[$52$][$53$]}$ \phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{\displaystyle\frac{2}{2}}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} \\ \hline
\phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{2}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} $\displaystyle\sqrt{[$54$]}$ & $\displaystyle\frac{[$55$]}{[$56$][$57$]}$ \phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{\displaystyle\frac{2}{2}}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} \\ \hline
\phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{2}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} $\displaystyle\frac{\sqrt{[$58$]}+[$59$]}{[$60$]}$ & $\displaystyle\frac{[$61$][$62$]}{[$63$][$64$]}$ \phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{\displaystyle\frac{2}{2}}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} \\ \hline
\phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{2}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} $[$65$]$ & $\displaystyle\frac{[$66$]}{[$67$][$68$]}$ \phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{\displaystyle\frac{2}{2}}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} \\ \hline
\end{tabular}
沖縄国際大学 私立 沖縄国際大学 2015年 第3問
以下の各問いに答えなさい.

(1)次の関数のグラフを$x$軸方向に$-2$,$y$軸方向に$4$だけ平行移動したグラフの方程式を求めよ.
\[ y=x^2-4x+12 \]
(2)実数$x,\ y$について$4$次関数$y=(x^2+4x)^2+4x^2+16x+5$において,$-3 \leqq x \leqq 1$における最大値,最小値を求めよ.
(3)菱形の凧を作成したい.使用できる凧の骨が$14 \, \mathrm{cm}$で,凧の骨は対角線に配置する.このとき,凧の大きさ(面積)の最大値を求めよ.また,周の長さの最小値も求めよ.
沖縄国際大学 私立 沖縄国際大学 2015年 第3問
以下の各問に答えなさい.

(1)次の関数のグラフを$x$軸方向に$\displaystyle -\frac{1}{3}$,$y$軸方向に$\displaystyle -\frac{1}{3}$だけ平行移動したグラフの方程式を求めよ.
\[ y=-3x^2+2x-1 \]
(2)関数$f(x)=x^2-12x+c$が$2 \leqq x \leqq 9$において最大値が$12$になるように,定数$c$の値を求めよ.
(3)縦横$13$本の線を持つ碁盤($13$路盤)がある.各線によって構成される枠の大きさはすべて等しく,$1$辺が$1 \, \mathrm{cm}$である.ここで,$4$つの角を左上から反時計回りに$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$とした場合,辺$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CD}$上にそれぞれ$\mathrm{E}$,$\mathrm{F}$,$\mathrm{G}$の場所に碁石を配置した.ただし,$\mathrm{AE}=x$,$\mathrm{BF}=2x$,$\mathrm{CG}=x+6 (0<x<6)$であるようにする.このとき,三角形$\mathrm{EFG}$の面積が最小になる場合の$x$の値と,その面積を求めよ.
(図は省略)
沖縄国際大学 私立 沖縄国際大学 2015年 第5問
以下の各問いに答えなさい.

(1)底面の直径が$6$,高さが$9$の直円錐がある.直円錐の内側に球を配置した.直円錐の底面と側面に球が接しているとき,この内接球の半径$r$を求めよ.
(2)線分$\mathrm{AB}$上に円$\mathrm{O}_1$と円$\mathrm{O}_2$が接しており,かつ,円$\mathrm{O}_1$と円$\mathrm{O}_2$は外接している.線分$\mathrm{AB}$と円$\mathrm{O}_1$の接点を$\mathrm{P}$,線分$\mathrm{AB}$と円$\mathrm{O}_2$の接点を$\mathrm{Q}$とする.このとき,円$\mathrm{O}_1$の半径を$7$,$\mathrm{PQ}=2 \sqrt{7}$における円$\mathrm{O}_2$の半径$r$を求めよ.ただし,円$\mathrm{O}_2$の半径は円$\mathrm{O}_1$より小さいとする.
(3)三階建ての建物がある.図のように$3$階を$\mathrm{AB}$,$2$階を$\mathrm{CD}$,$1$階を$\mathrm{EF}$としたとき,$3$階から$1$階の通路を$\mathrm{AP}$,$1$階から$2$階の通路を$\mathrm{PD}$とする.このとき,点$\mathrm{P}$を$\mathrm{EF}$上で動かしたとき,$\mathrm{AP}$と$\mathrm{PD}$の通路の長さの合計が最も短くなるときの値($\mathrm{AP}+\mathrm{PD}$)を求めよ.ただし,$\mathrm{AB}=\mathrm{CD}=\mathrm{EF}=8$,$\mathrm{AC}=\mathrm{CE}=\mathrm{BD}=\mathrm{DF}=2$とする.
(図は省略)
名古屋市立大学 公立 名古屋市立大学 2014年 第3問
円周上に等間隔に$n$個($n \geqq 4$)の点が配置されている.これらの点から異なる$3$点を無作為に選び出し,それらを頂点とする三角形をつくる.次の問いに答えよ.

(1)$n=8$のとき,三角形が直角三角形になる確率を求めよ.
(2)$n$が偶数であるとき,三角形が直角三角形になる確率を$n$の式で表せ.
(3)$n=12$のとき,三角形が鈍角三角形になる確率を求めよ.
名古屋市立大学 公立 名古屋市立大学 2014年 第3問
円周上に等間隔に$n$個($n \geqq 4$)の点が配置されている.これらの点から異なる$3$点を無作為に選び出し,それらを頂点とする三角形をつくる.次の問いに答えよ.

(1)$n=8$のとき,三角形が直角三角形になる確率を求めよ.
(2)$n$が偶数であるとき,三角形が直角三角形になる確率を$n$の式で表せ.
(3)$n=12$のとき,三角形が鈍角三角形になる確率を求めよ.
スポンサーリンク

「配置」とは・・・

 まだこのタグの説明は執筆されていません。