タグ「部分」の検索結果

89ページ目:全894問中881問~890問を表示)
広島市立大学 公立 広島市立大学 2010年 第3問
関数$\displaystyle f(x)=\frac{\sin x}{\sqrt{5+4 \cos x}} \quad (0 \leqq x \leqq 2\pi)$について,次の問いに答えよ.

(1)導関数$f^{\, \prime}(x)$を求め,$f(x)$の増減を調べよ.また,$f(x)$の最大値と最小値を求めよ.
(2)曲線$y=f(x)$と$x$軸で囲まれた2つの部分の面積の和を求めよ.
熊本県立大学 公立 熊本県立大学 2010年 第3問
$0 \leqq r \leqq l$のとき,円$(x-m)^2+(y-l)^2=r^2$によって囲まれる部分を$x$軸の周りに$1$回転してできる立体の体積を求めなさい.
高知工科大学 公立 高知工科大学 2010年 第2問
座標平面上に円$C:x^2+y^2-8x+2y+7=0$と点A$(0,\ 1)$がある.円$C$の中心をB,半径を$r$とする.また点Aを通り,傾き$m$の直線を$\ell$とする.次の各問に答えよ.

(1)点Bの座標と$r$を求めよ.
(2)直線$\ell$が円$C$と共有点を持つとき,$m$の取り得る値の範囲を求めよ.
(3)点Bを通り,傾き3の直線と直線$\ell$との交点をPとする.点Pが円$C$の円周または内部に含まれるとき,$m$の取り得る値の範囲を求めよ.
(4)(3)のとき,線分APの両端を除いた部分と円$C$との共有点をQとする.AQの長さの最大値と最小値を求めよ.
名古屋市立大学 公立 名古屋市立大学 2010年 第4問
$xy$平面上に点P$_0$を原点とし,点P$_1$,P$_2$,$\cdots$,P$_n$が$y$軸上の正の部分にこの順に並んでいる.$y=x^2 \ (x>0)$上に点Q$_1$,Q$_2$,$\cdots$,Q$_n$がこの順に並んでおり,$k=1$から$n$に対し,$\angle \text{Q}_k \text{P}_{k-1} \text{P}_k= \angle \text{Q}_k \text{P}_k \text{P}_{k-1} = \theta$が成り立っている.$\displaystyle \frac{1}{\tan \theta}=t$とおくとき,次の問いに答えよ.

(1)点P$_1$,P$_2$,P$_3$の座標を求めよ.
(2)P$_n(0,\ y_n)$,Q$_n(x_n,\ x_n^2)$とするとき,$y_n$を$x_{n+1}$で表せ.
(3)点P$_n$の座標を推測して,その結果を数学的帰納法で証明せよ.
京都府立大学 公立 京都府立大学 2010年 第3問
関数$\displaystyle f(x)=\int_0^\pi |t^2-x^2| \sin t \, dt$について,以下の問いに答えよ.

(1)$f(0)$を求めよ.
(2)定数$a$を実数とする.$f(a)$を求めよ.
(3)$f(x)$は$x=\pi$で微分可能であることを示せ.
(4)点$(\pi,\ f(\pi))$における曲線$C:y=f(x)$の接線を$\ell$とする.$C$,$\ell$,および$y$軸で囲まれた部分の面積を求めよ.
滋賀県立大学 公立 滋賀県立大学 2010年 第4問
$a$は定数で,$1<a<e$とする.曲線$C_1:y=x+\log x$上に点$\mathrm{P}(a,\ a+\log a)$,曲線$C_2:y=-\log x$上に点$\mathrm{Q}(a,\ -\log a)$がある.ただし,$e$は自然対数の底である.

(1)$\mathrm{P}$における$C_1$の接線を$\ell_1$,$\mathrm{Q}$における$C_2$の接線を$\ell_2$とする.このとき,$3$直線$x=0,\ \ell_1,\ \ell_2$で囲まれた部分の面積$S$を$a$を用いて表せ.
(2)$C_1$と$3$直線$y=0,\ x=1,\ x=a$で囲まれた部分を$R_1$,$C_2$と2直線$y=0,\ x=a$で囲まれた部分を$R_2$とする.また,$R_1,\ R_2$を$x$軸の周りに$1$回転させてできる立体をそれぞれ$B_1,\ B_2$とする.このとき,$B_1$から$B_2$を除いた部分の体積$V$を求めよ.
京都府立大学 公立 京都府立大学 2010年 第3問
定数$a$を正の実数とする.放物線$C:y=ax^2$上の点$\mathrm{P}$の$x$座標を$t$とする.$\mathrm{P}$における$C$の法線を$\ell$とし,$C$と$\ell$で囲まれた部分の面積を$S$とする.ただし,$t>0$とする.以下の問いに答えよ.

(1)$C$と$\ell$の$\mathrm{P}$以外の交点を$\mathrm{Q}$とする.$\mathrm{Q}$の$x$座標を$a,\ t$を用いて表せ.
(2)$S$を$a,\ t$を用いて表せ.
(3)$S$が最小となるときの$t$を$a$を用いて表せ.
大阪府立大学 公立 大阪府立大学 2010年 第5問
$k$を正の実数とし,$xy$平面上の$2$曲線
\[ C_1:y=-x^3+kx,\quad C_2:x^2+y^2=k \]
を考える.

(1)$C_1$と$C_2$の共有点の個数を求めよ.
(2)$C_1$と$C_2$が$4$つの共有点を持つとする.$x \geqq 0,\ y \geqq 0$の範囲において,$C_1$と$C_2$で囲まれた$2$つの部分の面積をそれぞれ求めよ.
大阪府立大学 公立 大阪府立大学 2010年 第6問
$xy$平面上に$2$直線
\[ \ell:y=-x+5,\quad m:y=3x-3 \]
が与えられている.曲線$C$は,$y=x^2$を平行移動した放物線であり,$\ell$と点$\mathrm{P}$で接し,$m$と点$\mathrm{Q}$で接しているとする.

(1)$C$の方程式を求めよ.
(2)$\mathrm{P}$と$\mathrm{Q}$の座標をそれぞれ求めよ.
(3)$C$と$\ell,\ m$で囲まれた部分の面積を求めよ.
公立はこだて未来大学 公立 公立はこだて未来大学 2010年 第6問
座標平面上の曲線$y=e^x-1$を$C$とする.曲線$C$と2直線$y=0,\ x=t$で囲まれる部分の面積を$S_1$とし,曲線$C$と2直線$y=2,\ x=t$で囲まれる部分の面積を$S_2$とする.ただし,$0<t<\log 3$とする.このとき,以下の問いに答えよ.

(1)$S_1=S_2$となるときの$t$の値を求めよ.
(2)$S_1+S_2$が最小となるときの$t$の値を求めよ.
スポンサーリンク

「部分」とは・・・

 まだこのタグの説明は執筆されていません。