タグ「選び方」の検索結果

2ページ目:全24問中11問~20問を表示)
慶應義塾大学 私立 慶應義塾大学 2014年 第1問
以下の文章の空欄に適切な数または式を入れて文章を完成させなさい.

(1)$1$から$13$までの整数が$1$つずつ書かれた$13$枚のカードの中から$3$枚を選ぶとき,偶数が書かれたカードが$2$枚以上含まれる選び方は$[あ]$通りであり,$11$以上の数が書かれたカードが少なくとも$1$枚含まれる選び方は$[い]$通りである.
(2)$\alpha=2+\sqrt{5}$とするとき,$\alpha$を解とし,整数を係数とする$2$次方程式$x^2+a_1x+b_1=0$を求めると$a_1=[う]$,$b_1=[え]$である.また自然数$n$に対して,$\alpha^n$を解とし,整数を係数とする$2$次方程式を$x^2+a_nx+b_n=0$とすると,$b_n=[お]$であり,$a_n^2+a_{2n}=[か]$である.
(3)実数$m$に対して
\[ A(m)=\int_0^1 x(e^x-m)^2 \, dx \]
とおくと,関数$A(m)$は$m=[き]$のとき最小値$[く]$をとる.
西南学院大学 私立 西南学院大学 2014年 第2問
男子$9$人,女子$5$人の合計$14$人の中から,バレーボールの選手を$6$人選んでチームをつくる.

(1)$6$人の選び方は全部で$\kakkofour{カ}{キ}{ク}{ケ}$通りある.
(2)男子$3$人,女子$3$人となる選び方は$[コ][サ][シ]$通りある.
(3)$6$人のチームが男女混合チームとなる選び方は$\kakkofour{ス}{セ}{ソ}{タ}$通りある.
横浜市立大学 公立 横浜市立大学 2014年 第4問
$n$を$4$以上の整数とする.$1$番から$n$番までの番号がふられたボールが$1$つずつある.このとき,以下の問いに答えよ.

(1)以下のような操作でボールを$1$列に並べる:

(i) $1$番のボールを適当な位置におく.
(ii) $2$番のボールを$1$番のボールの左または右に同じ確率でおく.
(iii) $3$番のボールをすでに並んでいる$2$つのボールの左または間または右に同じ確率でおく.
\mon[$\tokeishi$] 以下$n$番まで番号順に,$k$番のボールを,すでに並んでいるボールの一番左または間または一番右に同じ確率でおく,ことを繰り返す.

例えば,左から$2$番,$1$番,$3$番のボールが並んでいるとき,$4$番のボールが$2$番と$1$番の間におかれる確率は$\displaystyle \frac{1}{4}$である.
$n$番のボールをおき終えたとき,$i$番のボールが左から$j$番目に並ぶ確率は$\displaystyle \frac{1}{n}$であることを証明せよ.ただし,$i$と$j$は$1$以上,$n$以下の整数とする.
(2)$(1)$のボールの列を,(左から)番号順に並び替えるため,以下の操作を考える:
隣り合った$2$つのボールの組で,左のボールの番号が右のそれより大きなもの(入れ替え可能な組と呼ぶ)が存在するとき,そのようなボールの組を$1$つ選び,入れ替える.
入れ替え可能な組が複数あった場合に,入れ替える組をどのように選んだとしても,この操作を繰り返すことにより,すべてのボールの列は,必ず番号順の列になることを証明せよ.
(3)$(2)$の操作の回数は,入れ替える組の選び方とは無関係であることを証明せよ.
(4)$(2)$においてボールの列を番号順に並べ替えるとき,$i$番のボールを,より番号の小さいボールと入れ替える回数の期待値を$E_i$とする.このとき,
\[ \sum_{i=1}^n E_i \]
を求めよ.
高崎経済大学 公立 高崎経済大学 2014年 第2問
あるクラスに男子$4$名($\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$),女子$5$名($\mathrm{E}$,$\mathrm{F}$,$\mathrm{G}$,$\mathrm{H}$,$\mathrm{I}$),計$9$名の生徒がいる.以下の各問に答えよ.

このクラスでは,下図のように先生$1$名を含めて$10$名で$1$つの丸いテーブルを囲んで座っている.このとき,以下の並び方について答えよ.
(図は省略)
(1)先生の右隣りに男子生徒が座る並び方は何通りあるか.
(2)先生の両隣りに男子生徒が座る並び方は何通りあるか.
(3)女子生徒同士が隣り合わないように座る並び方は何通りあるか.
いま,このクラスで$4$名の発表者を選ぶことになった.このとき,以下の発表者の選び方について答えよ.
(4)生徒全員からの発表者の選び方は何通りあるか.
(5)男子生徒から$2$名かつ女子生徒から$2$名の発表者の選び方は何通りあるか.
九州工業大学 国立 九州工業大学 2013年 第4問
右の図のような,縦方向に$5$行,横方向に$5$列の合計$25$個のマス目から, \\
異なる$5$個のマス目を選んでマス目に○をつける.以下の問いに答えよ.
\img{678_3147_2013_1}{15}


(1)すべての列に○がついているようなマス目の選び方の総数を求めよ.
(2)すべての行と列に○がついているようなマス目の選び方の総数を求めよ.
(3)○のついている列が$2$列,○のついていない列が$3$列になるようなマス \\
目の選び方の総数を求めよ.
(4)右の図のように,右上のマス目が選ばれて○がついており,かつ,×がついた対角線上のマス目を選んで○をつけることができないものとする.このとき,すべての行と列に○がついているようなマス目の選び方の総数を求めよ.
埼玉工業大学 私立 埼玉工業大学 2013年 第1問
次の$[ ]$にあてはまるものを記入せよ.

(1)$6$種類の和菓子と$4$種類のケーキがある.これらの中から$1$種類を選ぶとき,その選び方は$[][]$通りである.また,和菓子とケーキをそれぞれ$1$種類ずつ選ぶとき,その選び方は$[][]$通りである.
(2)異なる$8$個の菓子を$4$個ずつ$2$組に分ける分け方は$[][]$通りであり,$2$個ずつ$4$組に分ける分け方は$[][][]$通りである.
大同大学 私立 大同大学 2013年 第1問
次の$[ ]$にあてはまる$0$から$9$までの数字を記入せよ.ただし,根号内の平方因数は根号外にくくり出し,分数は既約分数で表すこと.

(1)放物線$C:y=x^2+ax+b$が点$(5,\ 8)$を通るとすると,$b=-[ ] a-[][]$である.さらに,$C$の頂点が$y$軸上にあるとき$a=[ ]$,$b=-[][]$であり,$C$の頂点が$x$軸上にあるとき$a=-[][] \pm [ ] \sqrt{[ ]}$である.
(2)$2a^2-ab-15b^2=([ ] a+[ ] b)(a-[ ] b)$である.$a=3 \sqrt{6}+5 \sqrt{2}$,$b=\sqrt{6}-2 \sqrt{2}$のとき,$2a^2-ab-15b^2=[][][] \sqrt{[ ]}$である.
(3)$\triangle \mathrm{ABC}$において$\mathrm{AB}=5$,$\mathrm{BC}=6$,$\mathrm{CA}=3$とするとき,$\displaystyle \cos A=-\frac{[ ]}{[][]}$であり,$\triangle \mathrm{ABC}$の面積は$[ ] \sqrt{[][]}$である.さらに,$\mathrm{A}$から辺$\mathrm{BC}$に下ろした垂線の足を$\mathrm{H}$とすると,$\displaystyle \mathrm{AH}=\frac{[ ] \sqrt{[][]}}{[ ]}$である.
(4)$1$から$20$までの整数の中から異なる$2$個の整数$a,\ b (a<b)$を選ぶとき,$a,\ b$の積が奇数になる選び方は$[][]$通りあり,$3$の倍数でない選び方は$[][]$通りある.また,$a,\ b$の積が$3$の倍数でない奇数になる選び方は$[][]$通りあり,$3$の倍数でない偶数になる選び方は$[][]$通りある.
法政大学 私立 法政大学 2012年 第2問
$n$を$2$以上の整数とする.

(1)平面上の平行な$2$直線上に,相異なる点がそれぞれ$n$個ずつある.これらの$2n$個の点から$3$点を選ぶ.

(i) $n=5$のとき,この選び方は全部で$[アイウ]$通りあり,選んだ$3$点が$1$直線上にあるような選び方は$[エオ]$通りある.
(ii) 選んだ$3$点が三角形をつくるような選び方は$\displaystyle \left( [カ]-[キ] \right)$通りある.
ただし,$[カ]$,$[キ]$については,以下の$①$~$\marukyu$からそれぞれ$1$つを選べ.ここで,同じものを何回選んでもよい.
\[ \begin{array}{lllllllll}
① n & & ② 2n & & ③ 3n & & ④ n^2 & & ⑤ 2n^2 \\
⑥ 3n^2 & & ④chi n^3 & & \maruhachi 2n^3 & & \marukyu 3n^3 & &
\end{array} \]

(2)$\mathrm{O}$を中心とする円の円周を等分する$2n$個の点がある.これらの$2n$個の点と点$\mathrm{O}$から$3$点を選ぶ.

(i) $n=3$のとき,選んだ$3$点が三角形をつくるような選び方は$[クケ]$通りある.

(ii) 選んだ$3$点が三角形をつくるような選び方は$\displaystyle \frac{n \left( [コ] n^{[サ]}-[シ] \right)}{[ス]}$通りある.
(iii) $n=12$のとき,選んだ$3$点が正三角形をつくるような選び方は$[セソ]$通りある.
滋賀大学 国立 滋賀大学 2011年 第1問
$n$を$3$以上の整数とする.$2n$個の整数$1,\ 2,\ 3,\ \cdots,\ 2n$から無作為に異なる$3$個の数を選ぶとき,次の問いに答えよ.

(1)$3$個の数を小さい順に並べた数列が,公差$2$の等差数列である選び方は何通りあるか.
(2)$3$個の数を小さい順に並べた数列が,等差数列である確率を求めよ.
北海学園大学 私立 北海学園大学 2011年 第3問
$1$から$9$までの整数の中から異なる$3$つの整数$a,\ b,\ c$を選ぶとき,次の問いに答えよ.ただし,$a<b<c$とする.

(1)$a,\ b,\ c$の積が奇数になる選び方は何通りあるか.
(2)$a,\ b,\ c$の積が$3$の倍数になる選び方は何通りあるか.
(3)$a,\ b,\ c$の積が$9$の倍数になる選び方は何通りあるか.
スポンサーリンク

「選び方」とは・・・

 まだこのタグの説明は執筆されていません。