タグ「距離」の検索結果

8ページ目:全233問中71問~80問を表示)
愛媛大学 国立 愛媛大学 2014年 第4問
$n$を$0$以上の整数とする.点$\mathrm{P}$,$\mathrm{Q}$は,$1$辺の長さが$1$である正四面体$\mathrm{ABCD}$の頂点の上を,以下の条件$(\mathrm{a})$,$(\mathrm{b})$を満たしながら移動する.

\mon[$(\mathrm{a})$] 時刻$t=0$において,点$\mathrm{P}$は頂点$\mathrm{A}$に,点$\mathrm{Q}$は頂点$\mathrm{B}$にいる.
\mon[($\mathrm{b})$] 時刻$t=n+1$において,点$\mathrm{P}$と点$\mathrm{Q}$は各々,時刻$t=n$のときにいた頂点から,他の$3$つの頂点のいずれかに,それぞれ$\displaystyle \frac{1}{3}$の確率で移動する.

時刻$t=n$における点$\mathrm{P}$と点$\mathrm{Q}$の間の距離を$d_n$とおく.$d_n$の値は$0$または$1$である.時刻$t=n$において$d_n=1$となる確率を$p_n$とする.

(1)時刻$t=1$とする.

(i) 点$\mathrm{P}$が頂点$\mathrm{C}$にいるとき,$d_1=1$となる点$\mathrm{Q}$の位置は何通りか.
(ii) 点$\mathrm{P}$が頂点$\mathrm{B}$にいるとき,$d_1=1$となる点$\mathrm{Q}$の位置は何通りか.

(2)$p_1$を求めよ.
(3)$d_1+d_2=1$となる確率を求めよ.
(4)$p_{n+1}$を$p_n$で表し,$p_n$を求めよ.
愛媛大学 国立 愛媛大学 2014年 第1問
$n$を$0$以上の整数とする.点$\mathrm{P}$,$\mathrm{Q}$は,$1$辺の長さが$1$である正四面体$\mathrm{ABCD}$の頂点の上を,以下の条件$(\mathrm{a})$,$(\mathrm{b})$を満たしながら移動する.

\mon[$(\mathrm{a})$] 時刻$t=0$において,点$\mathrm{P}$は頂点$\mathrm{A}$に,点$\mathrm{Q}$は頂点$\mathrm{B}$にいる.
\mon[($\mathrm{b})$] 時刻$t=n+1$において,点$\mathrm{P}$と点$\mathrm{Q}$は各々,時刻$t=n$のときにいた頂点から,他の$3$つの頂点のいずれかに,それぞれ$\displaystyle \frac{1}{3}$の確率で移動する.

時刻$t=n$における点$\mathrm{P}$と点$\mathrm{Q}$の間の距離を$d_n$とおく.$d_n$の値は$0$または$1$である.時刻$t=n$において$d_n=1$となる確率を$p_n$とする.

(1)時刻$t=1$とする.

(i) 点$\mathrm{P}$が頂点$\mathrm{C}$にいるとき,$d_1=1$となる点$\mathrm{Q}$の位置は何通りか.
(ii) 点$\mathrm{P}$が頂点$\mathrm{B}$にいるとき,$d_1=1$となる点$\mathrm{Q}$の位置は何通りか.

(2)$p_1$を求めよ.
(3)$d_1+d_2=1$となる確率を求めよ.
(4)$p_{n+1}$を$p_n$で表し,$p_n$を求めよ.
慶應義塾大学 私立 慶應義塾大学 2014年 第1問
次の問いに答えよ.

(1)座標平面上の$3$点$\mathrm{A}(4,\ 8)$,$\mathrm{O}(0,\ 0)$,$\mathrm{C}(12,\ 0)$を頂点とする三角形$\triangle \mathrm{AOC}$に接する正方形を,一辺が$\mathrm{OC}$上にあり,$2$頂点が三角形の他の辺上にあるようにとる.このとき正方形の一辺の長さは
\[ \frac{[$1$][$2$]}{[$3$][$4$]} \]
である.
(2)$u,\ v$を$0<u<2$,$0<v$なる実数とするとき
\[ (u-v)^2+\left( \sqrt{4-u^2}-\frac{18}{v} \right)^2 \]

\[ u=\sqrt{[$5$]},\quad v=[$6$] \sqrt{[$7$]} \]
のとき,最小値$[$8$][$9$]$をとる.(ヒント:平面上の$2$点の距離を考える.)
慶應義塾大学 私立 慶應義塾大学 2014年 第1問
次の問いに答えよ.

(1)$x,\ y,\ z$は実数で$xyz \neq 0$とする.もし
\[ 2^x=3^y=[$1$][$2$]^z \]
ならば
\[ \frac{3}{x}+\frac{2}{y}=\frac{1}{z} \]
である.
(2)関数$f(x)=x^2-2$に対して,$g(x)=f(f(x))$とおく.このとき,方程式$g(x)=x$の解は
\[ [$3$][$4$],\quad [$5$][$6$],\quad \frac{[$7$][$8$] \pm \sqrt{[$9$][$10$]}}{[$11$][$12$]} \]
である.ただし,最初の数は$2$番目の数より小とする.
(3)直線$y=-3x$上の点$\mathrm{P}$と,曲線$xy=2 (x>0)$上の点$\mathrm{Q}$の間の距離の最小値は
\[ \frac{[$13$] \sqrt{[$14$][$15$]}}{[$16$][$17$]} \]
である.
慶應義塾大学 私立 慶應義塾大学 2014年 第1問
次の問いに答えよ.

(1)実数$x$の関数$f(x)=x^3-ax^2+bx+4b-2$は,$\displaystyle \lim_{x \to 4} \frac{f(x)}{x-2}=-5$を満たす.ただし,$a,\ b$は実数とする.このとき,

(i) $b$を$a$の式で表すと,$b=[$1$]a-[$2$]$である.
(ii) $x$の値が$3$から$6$まで変化するときの関数$f(x)$の平均変化率が,関数$f(x)$の$x=2+\sqrt{7}$における微分係数に等しいとき,$a=[$3$]$,$b=[$4$]$である.

(2)実数$a$についての方程式
\[ A=|2a+\displaystyle\frac{4|{3}k}+|a-\displaystyle\frac{8|{9}k} \]
において,$\displaystyle a=\frac{1}{4}$のとき$\displaystyle A=\frac{21}{4}$である.ただし,$k$は正の実数の定数とする.このとき,

(i) $\displaystyle k=\frac{[$5$]}{[$6$]}$である.
(ii) $A$の最小値は$\displaystyle \frac{[$7$]}{[$8$]}$であり,このときの$a$の値は$\displaystyle \frac{[$9$][$10$]}{[$11$]}$である.

(3)$n$を自然数とする.数列$\{a_n\}$は,$a_1=5$,$\displaystyle a_{n+1}=\frac{25}{{a_n}^2}$を満たす.このとき,

(i) $a_3=[$12$][$13$]$,$\displaystyle a_4=\frac{[$14$]}{[$15$][$16$]}$である.
(ii) $b_n=\log_5 a_n$とおくとき,数列$\{b_n\}$の一般項を$n$の式で表すと,
\[ b_n=\frac{\left( [$17$][$18$] \right)^{n-1}}{[$19$]}+\frac{[$20$]}{[$21$]} \]
である.

(4)円に内接する四角形$\mathrm{ABCD}$において,$\angle \mathrm{BCD}=60^\circ$,$\mathrm{CD}=2 \sqrt{6}$,$\angle \mathrm{DAB}>\angle \mathrm{CDA}$である.また$2$直線$\mathrm{BA}$,$\mathrm{CD}$の交点を$\mathrm{E}$,$2$直線$\mathrm{DA}$,$\mathrm{CB}$の交点を$\mathrm{F}$とすると,$\angle \mathrm{AFB}=45^\circ$,$\mathrm{DE}=3 \sqrt{2}-\sqrt{6}$である.このとき,

(i) $\angle \mathrm{AED}$の大きさは${[$22$][$23$]}^\circ$であり,辺$\mathrm{EB}$の長さは$[$24$]$である.

(ii) 三角形$\mathrm{AED}$の面積は,三角形$\mathrm{CEB}$の面積の$\displaystyle \frac{[$25$]-\sqrt{[$26$]}}{[$27$]}$倍である.

(5)$xy$平面上に放物線$C:2x^2+(k-5)x-(k+1)y+6k-14=0$と直線$\displaystyle \ell:y=\frac{1}{2}x$がある.$k$は$k \neq -1$を満たす実数とする.放物線$C$は$-1$を除くすべての実数$k$に対して$2$定点$\mathrm{A}(x_\mathrm{A},\ y_\mathrm{A})$,$\mathrm{B}(x_\mathrm{B},\ y_\mathrm{B})$を通る.ただし,$x_\mathrm{A}<x_\mathrm{B}$とする.このとき,

(i) $2$点$\mathrm{A}$,$\mathrm{B}$の座標は
\[ (x_\mathrm{A},\ y_\mathrm{A})=\left( [$28$][$29$],\ [$30$] \right),\quad (x_\mathrm{B},\ y_\mathrm{B})=\left( [$31$],\ [$32$][$33$] \right) \]
である.
(ii) 直線$\ell$上に点$\mathrm{P}$をおき,$2$点$\mathrm{A}$,$\mathrm{B}$をそれぞれ点$\mathrm{P}$と線分で結ぶとき,距離の和$\mathrm{AP}+\mathrm{BP}$を最小にする点$\mathrm{P}$の座標は$\displaystyle \left( \frac{[$34$][$35$]}{[$36$]},\ \frac{[$37$][$38$]}{[$39$]} \right)$である.
千葉工業大学 私立 千葉工業大学 2014年 第1問
次の各問に答えよ.

(1)$\displaystyle x<\frac{\sqrt{3}}{1-\sqrt{3}}$をみたす最大の整数$x$は$[アイ]$である.
(2)等式$\displaystyle \frac{x+5}{x^2+x-2}=\frac{a}{x-1}+\frac{b}{x+2}$が$x$についての恒等式であるとき,$a=[ウ]$,$b=[エオ]$である.
(3)点$(-4,\ a)$と直線$3x+4y-1=0$との距離が$1$であるとき,$a=[カ]$または$\displaystyle \frac{[キ]}{[ク]}$である.
(4)$\displaystyle \left( x-\frac{2}{3} \right)^9$の展開式において,$x^8$の係数は$[ケコ]$であり,$x^7$の係数は$[サシ]$である.
(5)$\overrightarrow{a}=(3,\ t+1,\ 1)$と$\displaystyle \overrightarrow{b}=\left( 2,\ -3,\ \frac{3}{2}t \right)$が垂直であるとき,$t=[ス]$である.
(6)$\displaystyle (5^{\frac{1}{3}}-5^{-\frac{1}{3}})(5^{\frac{2}{3}}+1+5^{-\frac{2}{3}})=\frac{[セソ]}{[タ]}$である.
(7)$\log_{10}2=p$とおくと,$\log_{10}5=[チ]-p$であり,$\displaystyle \log_4 500=\frac{[ツ]-p}{[テ]p}$である.
(8)$\displaystyle \int_{-1}^2 (-x^2+3 |x|) \, dx=\frac{[ト]}{[ナ]}$である.
福岡大学 私立 福岡大学 2014年 第2問
$a>0$とする.点$\mathrm{A}(a,\ a)$と直線$y=3x$との距離を$a$を用いて表すと$[ ]$である.また,点$\mathrm{A}$を中心とし原点$\mathrm{O}$を通る円と直線$y=3x$との原点以外の交点を$\mathrm{P}$とするとき,$\mathrm{OP}=\sqrt{5}$ならば,$a=[ ]$である.
学習院大学 私立 学習院大学 2014年 第2問
平面上の$2$点$\mathrm{P}(1,\ 2)$,$\mathrm{Q}(3,\ 2)$と直線$L:y=ax+1$に対して,$\mathrm{P}$と$L$の距離を$p$とし,$\mathrm{Q}$と$L$の距離を$q$とする.$a$が実数全体を動くとき,$p^2+q^2$の最小値と,最小値を与える$a$を求めよ.
金沢工業大学 私立 金沢工業大学 2014年 第5問
原点を$\mathrm{O}$とする座標平面において,次の極方程式で表される$2$つの曲線を考える.
\[ r=f(\theta)=3 \cos \theta,\quad r=g(\theta)=1+\cos \theta \]
ただし,$0 \leqq \theta<2\pi$とする.また,極座標が$(f(\theta),\ \theta)$,$(g(\theta),\ \theta)$である点をそれぞれ$\mathrm{P}$,$\mathrm{Q}$とする.

(1)点$\mathrm{P}$は,中心が直交座標で$\displaystyle \left( \frac{[ア]}{[イ]},\ [ウ] \right)$であり,半径が$\displaystyle \frac{[エ]}{[オ]}$である円の周上を動く.
(2)点$\mathrm{P}(f(\theta),\ \theta)$と点$\mathrm{Q}(g(\theta),\ \theta)$の間の距離は$\displaystyle \theta=\frac{\pi}{[カ]}$および$\displaystyle \frac{[キ]}{[ク]}\pi$のとき最小値$[ケ]$をとり,$\theta=[コ]$のとき最大値$[サ]$をとる.
(3)線分$\mathrm{PQ}$の中点が原点$\mathrm{O}$となるとき,点$\mathrm{P}$の直交座標は$\displaystyle \left( \frac{[シ]}{[スセ]},\ \pm \frac{[ソ] \sqrt{[タチ]}}{[ツテ]} \right)$である.
安田女子大学 私立 安田女子大学 2014年 第3問
放物線$y=x^2+ax-1$と直線$y=x+b$について,次の問いに答えよ.

(1)放物線と直線が$2$つの交点を持つための条件を,$a$と$b$を用いて表せ.
(2)$2$つの交点の距離が$1$となるための条件を,$a$と$b$を用いて表せ.
(3)$2$つの交点を結んだ線分の中点がちょうど原点となるときの$a$と$b$の値をそれぞれ求めよ.
スポンサーリンク

「距離」とは・・・

 まだこのタグの説明は執筆されていません。