タグ「証明」の検索結果

76ページ目:全1924問中751問~760問を表示)
千葉大学 国立 千葉大学 2014年 第1問
袋の中に,赤玉が$3$個,白玉が$7$個が入っている.袋から玉を無作為に$1$つ取り出し,色を確認してから,再び袋に戻すという試行を行う.この試行を$N$回繰り返したときに,赤玉を$A$回(ただし$0 \leqq A \leqq N$)取り出す確率を$p(N,\ A)$とする.このとき,以下の問いに答えよ.

(1)確率$p(N,\ A)$を$N$と$A$を用いて表せ.
(2)$N$が$10$の倍数,すなわち$N=10n$となる自然数$n$があるとする.確率$p(10n,\ 0)$,$p(10n,\ 1)$,$\cdots$,$p(10n,\ 10n)$のうち,一番大きな値は$p(10n,\ 3n)$であることを次の手順により証明せよ.

(i) $0$以上の整数$a$,自然数$b$に対して,$\displaystyle \frac{b!}{a!} \leqq b^{b-a}$を示す.ただし$0!=1$とする.

(ii) $0$以上$10n$以下の整数$m$に対して,$\displaystyle \frac{p(10n,\ m)}{p(10n,\ 3n)} \leqq 1$を示す.
千葉大学 国立 千葉大学 2014年 第2問
座標平面上に,原点を中心とする半径$1$の円と,その円に外接し各辺が$x$軸または$y$軸に平行な正方形がある.円周上の点$(\cos \theta,\ \sin \theta)$(ただし$\displaystyle 0<\theta<\frac{\pi}{2}$)における接線と正方形の隣接する$2$辺がなす三角形の$3$辺の長さの和は一定であることを示せ.また,その三角形の面積を最大にする$\theta$を求めよ.
千葉大学 国立 千葉大学 2014年 第2問
座標平面上に,原点を中心とする半径$1$の円と,その円に外接し各辺が$x$軸または$y$軸に平行な正方形がある.円周上の点$(\cos \theta,\ \sin \theta)$(ただし$\displaystyle 0<\theta<\frac{\pi}{2}$)における接線と正方形の隣接する$2$辺がなす三角形の$3$辺の長さの和は一定であることを示せ.また,その三角形の面積を最大にする$\theta$を求めよ.
千葉大学 国立 千葉大学 2014年 第3問
関数$f(x)=e^{\sin x}(\sin 2x-2 \cos x)$について,以下の問いに答えよ.

(1)$\displaystyle \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(x) \, dx$の値を求めよ.

(2)$0 \leqq x<2\pi$における$f(x)$の最大値を求めよ.
(3)$x \geqq 0$のとき$(x^2+2x-2)e^x \geqq f(x)$が成り立つことを示せ.
千葉大学 国立 千葉大学 2014年 第5問
自然数$n$に対して,和
\[ S_n=1+\frac{1}{2}+\frac{1}{3}+\cdots +\frac{1}{n} \]
を考える.

(1)各自然数$n$に対して$2^k \leqq n$をみたす最大の整数$k$を$f(n)$で表すとき,$2$つの奇数$a_n,\ b_n$が存在して
\[ S_n=\frac{a_n}{2^{f(n)}b_n} \]
と表されることを示せ.
(2)$n \geqq 2$のとき$S_n$は整数にならないことを示せ.
(3)さらに,自然数$m,\ n (m<n)$に対して,和
\[ S_{m,n}=\frac{1}{m}+\frac{1}{m+1}+\cdots +\frac{1}{n} \]
を考える.$S_{m,n}$はどんな$m,\ n (m<n)$に対しても整数にならないことを示せ.
千葉大学 国立 千葉大学 2014年 第1問
袋の中に,赤玉が$3$個,白玉が$7$個が入っている.袋から玉を無作為に$1$つ取り出し,色を確認してから,再び袋に戻すという試行を行う.この試行を$N$回繰り返したときに,赤玉を$A$回(ただし$0 \leqq A \leqq N$)取り出す確率を$p(N,\ A)$とする.このとき,以下の問いに答えよ.

(1)確率$p(N,\ A)$を$N$と$A$を用いて表せ.
(2)$N$が$10$の倍数,すなわち$N=10n$となる自然数$n$があるとする.確率$p(10n,\ 0)$,$p(10n,\ 1)$,$\cdots$,$p(10n,\ 10n)$のうち,一番大きな値は$p(10n,\ 3n)$であることを次の手順により証明せよ.

(i) $0$以上の整数$a$,自然数$b$に対して,$\displaystyle \frac{b!}{a!} \leqq b^{b-a}$を示す.ただし$0!=1$とする.

(ii) $0$以上$10n$以下の整数$m$に対して,$\displaystyle \frac{p(10n,\ m)}{p(10n,\ 3n)} \leqq 1$を示す.
京都教育大学 国立 京都教育大学 2014年 第1問
自然数$n$に関する次の条件$p,\ q$を考える.

$p:n^2+3$は偶数である.
$q:n$は奇数である.


(1)命題「$p \Longrightarrow q$」の逆,対偶および裏を述べよ.
(2)命題「$p \Longrightarrow q$」を証明せよ.
京都教育大学 国立 京都教育大学 2014年 第2問
$\theta$を実数とし,
\[ X_n=\sum_{k=0}^{n-1} \cos k\theta,\quad Y_n=\sum_{k=0}^{n-1} \sin k\theta \quad (n=1,\ 2,\ \cdots) \]
とする.このとき,

$X_n \cos \theta-Y_n \sin \theta=X_{n+1}-1,$
$X_n \sin \theta+Y_n \cos \theta=Y_{n+1}$

$(n=1,\ 2,\ \cdots)$であることを証明せよ.
京都教育大学 国立 京都教育大学 2014年 第3問
次の問に答えよ.

(1)$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$は異なる$3$点,$\mathrm{M}$は線分$\mathrm{AB}$の中点であるとする.このとき,
\[ \mathrm{OA}^2+\mathrm{OB}^2=2(\mathrm{AM}^2+\mathrm{OM}^2) \]
であることを証明せよ.
(2)$xy$平面の原点$\mathrm{O}$を中心とする半径$3$の円を$\mathrm{O}_3$,$xy$平面の$\mathrm{O}$を中心とする半径$4$の円を$\mathrm{O}_4$とする.さらに$\mathrm{AB}$は$xy$平面上の長さ$6$の線分,$\mathrm{M}$は線分$\mathrm{AB}$の中点であるとする.次の条件$p,\ q$を考える.

$p:2$点$\mathrm{A}$,$\mathrm{B}$は$\mathrm{O}_4$の内部にある.
$q:$点$\mathrm{M}$は$\mathrm{O}_3$の内部にある.

このとき,次の問に答えよ.

(i) $p$は$q$であるための十分条件であることを証明せよ.
(ii) $p$は$q$であるための必要条件ではないことを証明せよ.
信州大学 国立 信州大学 2014年 第5問
関数$f(x)$は,$f^{\prime\prime}(x)<0$をみたすとする.$t \geqq 0$のとき,次の$(1)$,$(2)$の不等式が成り立つことを示せ.

(1)$f(0)+f^\prime(t)t \leqq f(t) \leqq f(0)+f^\prime(0)t$

(2)$\displaystyle \frac{f(0)t+f(t)t}{2} \leqq \int_0^t f(u) \, du \leqq f(0)t+\frac{f^\prime(0)}{2}t^2$
スポンサーリンク

「証明」とは・・・

 まだこのタグの説明は執筆されていません。