タグ「証明」の検索結果

7ページ目:全1924問中61問~70問を表示)
新潟大学 国立 新潟大学 2016年 第5問
一般項が$\displaystyle a_n=\frac{n!}{n^n}$で表される数列$\{a_n\}$について,次の問いに答えよ.

(1)$\displaystyle \lim_{n \to \infty}a_n=0$を示せ.
(2)$\displaystyle \lim_{n \to \infty} \frac{a_n}{a_{n+1}}$を求めよ.
(3)$2$以上の整数$k$に対して,$\displaystyle \lim_{n \to \infty} \left( \displaystyle\frac{a_{kn}}{a_n} \right)^{\frac{1}{n}}$を$k$を用いて表せ.
大阪教育大学 国立 大阪教育大学 2016年 第3問
以下の問に答えよ.

(1)$\displaystyle \int_0^x \sin^3 t \, dt$を求めよ.
(2)関数$\displaystyle F(x)=\int_0^x (e^{3x}-e^{3t}) \sin^3 t \, dt$を$x$について微分せよ.
(3)$F^\prime(x) \geqq 0$を証明せよ.
滋賀大学 国立 滋賀大学 2016年 第4問
関数$f(x)=x^3-5x^2+6x+1$について,次の問いに答えよ.

(1)$x \geqq 0$のとき,不等式$f(x)>0$が成り立つことを証明せよ.
(2)$a$を$0$以上の定数とし,曲線$y=f(x)$と$x$軸および$2$直線$x=a$,$x=a+1$で囲まれた図形の面積を$S(a)$とする.$a$を変化させたとき,$S(a)$の最小値とそのときの$a$の値を求めよ.
山形大学 国立 山形大学 2016年 第3問
数列$\{a_n\}$が
\[ a_1=-1,\quad a_{n+1}=2a_n+3n-3 \quad (n=1,\ 2,\ 3,\ \cdots) \]
で定められているとき,次の問に答えよ.

(1)$b_n=a_n+3n (n=1,\ 2,\ 3,\ \cdots)$とする.このとき,$b_{n+1}$と$b_n$の関係式を求めよ.
(2)数列$\{a_n\}$の一般項を求めよ.
(3)すべての自然数$n$に対し,$a_n \neq 0$であることを示せ.
(4)次の式で定められる数列$\{c_n\}$の一般項を求めよ.
\[ c_1=8,\quad c_{n+1}=\frac{c_n}{nc_n+1} \quad (n=1,\ 2,\ 3,\ \cdots) \]
(5)次の式で定められる数列$\{d_n\}$の一般項を求めよ.
\[ d_1=-8,\quad d_{n+1}=\frac{a_{n+1}d_n}{nd_n+a_n} \quad (n=1,\ 2,\ 3,\ \cdots) \]
九州工業大学 国立 九州工業大学 2016年 第3問
複素数$z_n$を
\[ z_0=0,\quad z_1=1,\quad z_{n+2}=z_{n+1}+\alpha (z_{n+1}-z_n) \quad (n=0,\ 1,\ 2,\ \cdots) \]
により定める.ただし,$i$を虚数単位とし,$\displaystyle \alpha=\frac{1}{2} \left( \cos \frac{\pi}{3}+i \sin \frac{\pi}{3} \right)$とする.また,複素数平面上で複素数$z_n$を表す点を$\mathrm{P}_n$とする.以下の問いに答えよ.

(1)$z_2,\ z_3,\ z_4$を求めよ.
(2)点$\mathrm{P}_0$,$\mathrm{P}_1$,$\mathrm{P}_2$,$\mathrm{P}_3$,$\mathrm{P}_4$を図示せよ.また,線分$\mathrm{P}_0 \mathrm{P}_1$,$\mathrm{P}_1 \mathrm{P}_2$,$\mathrm{P}_2 \mathrm{P}_3$,$\mathrm{P}_3 \mathrm{P}_4$の長さ,および$\angle \mathrm{P}_2 \mathrm{P}_1 \mathrm{P}_0$,$\angle \mathrm{P}_3 \mathrm{P}_2 \mathrm{P}_1$,$\angle \mathrm{P}_4 \mathrm{P}_3 \mathrm{P}_2$の値も図中に示せ.
(3)$z_{n+1}-z_n (n=1,\ 2,\ 3,\ \cdots)$を$\alpha$と$n$を用いて表せ.
(4)$z_n$の実部,虚部をそれぞれ$x_n,\ y_n$とする.このとき,$x_n,\ y_n$をそれぞれ$n$を用いて表せ.
(5)$(4)$で求めた$x_n,\ y_n$について,$\displaystyle \lim_{n \to \infty}x_n,\ \lim_{n \to \infty}y_n$をそれぞれ求めよ.
山形大学 国立 山形大学 2016年 第1問
$xy$平面上に点$\mathrm{A}(0,\ \sqrt{2})$,点$\mathrm{B}(0,\ -\sqrt{2})$がある.点$\mathrm{P}$は
\[ \mathrm{PB}=\mathrm{PA}+2 \]
を満たすように$xy$平面上を動き,軌跡$C$をえがく.以下の問いに答えよ.

(1)軌跡$C$の方程式を求め,点$\mathrm{P}$の$y$座標のとりうる範囲を示せ.

(2)軌跡$C$の方程式について,導関数$\displaystyle \frac{dy}{dx}$を求めよ.



$a$を実数とする.曲線$x^2+(y-a)^2=9$と軌跡$C$との共有点について,以下の問いに答えよ.


\mon[$(3)$] $a=4$のとき,共有点の個数を求めよ.
\mon[$(4)$] $a$の値によって共有点の個数がどのように変わるか調べよ.
山形大学 国立 山形大学 2016年 第4問
数列$\{a_n\}$が
\[ a_1=-1,\quad a_{n+1}=2a_n+3n-3 \quad (n=1,\ 2,\ 3,\ \cdots) \]
で定められているとき,次の問に答えよ.

(1)$b_n=a_n+3n (n=1,\ 2,\ 3,\ \cdots)$とする.このとき,$b_{n+1}$と$b_n$の関係式を求めよ.
(2)数列$\{a_n\}$の一般項を求めよ.
(3)すべての自然数$n$に対し,$a_n \neq 0$であることを示せ.
(4)次の式で定められる数列$\{c_n\}$の一般項を求めよ.
\[ c_1=8,\quad c_{n+1}=\frac{c_n}{nc_n+1} \quad (n=1,\ 2,\ 3,\ \cdots) \]
(5)次の式で定められる数列$\{d_n\}$の一般項を求めよ.
\[ d_1=-8,\quad d_{n+1}=\frac{a_{n+1}d_n}{nd_n+a_n} \quad (n=1,\ 2,\ 3,\ \cdots) \]
山形大学 国立 山形大学 2016年 第2問
数列$\{a_n\}$が
\[ a_1=-1,\quad a_{n+1}=2a_n+3n-3 \quad (n=1,\ 2,\ 3,\ \cdots) \]
で定められているとき,次の問に答えよ.

(1)$b_n=a_n+3n (n=1,\ 2,\ 3,\ \cdots)$とする.このとき,$b_{n+1}$と$b_n$の関係式を求めよ.
(2)数列$\{a_n\}$の一般項を求めよ.
(3)すべての自然数$n$に対し,$a_n \neq 0$であることを示せ.
(4)次の式で定められる数列$\{c_n\}$の一般項を求めよ.
\[ c_1=8,\quad c_{n+1}=\frac{c_n}{nc_n+1} \quad (n=1,\ 2,\ 3,\ \cdots) \]
(5)次の式で定められる数列$\{d_n\}$の一般項を求めよ.
\[ d_1=-8,\quad d_{n+1}=\frac{a_{n+1}d_n}{nd_n+a_n} \quad (n=1,\ 2,\ 3,\ \cdots) \]
横浜国立大学 国立 横浜国立大学 2016年 第1問
次の問いに答えよ.

(1)関数$\displaystyle f(x)=\frac{\log (1-x)}{x}$は$0<x<1$の範囲で減少することを示せ.
(2)極限値
\[ \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n \frac{1}{\tan \left( \displaystyle\frac{(n+k) \pi}{6n} \right)} \]
を求めよ.
横浜国立大学 国立 横浜国立大学 2016年 第4問
$a$を正の定数とする.$2$つの曲線$C_1:y=x \log x$と$C_2:y=ax^2$の両方に接する直線の本数を求めよ.ただし,$\displaystyle \lim_{x \to \infty} \frac{(\log x)^2}{x}=0$は証明なしに用いてよい.
スポンサーリンク

「証明」とは・・・

 まだこのタグの説明は執筆されていません。