タグ「証明」の検索結果

54ページ目:全1924問中531問~540問を表示)
北九州市立大学 公立 北九州市立大学 2015年 第2問
$xy$平面上の原点$\mathrm{O}$と$3$次関数$f(x)=x^3-6x^2+15x$と$1$次関数$g(x)=3ax$を考える.ただし,$a$は定数である.また,関数$y=f(x)$のグラフで$x \geqq 0$を満たす部分を曲線$C$とする.曲線$y=f(x)$上の点を$\mathrm{P}(p,\ f(p))$とし,点$\mathrm{P}$における曲線$y=f(x)$の接線を$\ell$とする.ただし,$p \geqq 0$を満たす.以下の問題に答えよ.

(1)関数$f(x)$が単調に増加することを示せ.
(2)直線$\ell$の傾きが最小となるとき,$p$の値と直線$\ell$の式を求めよ.
(3)関数$y=g(x)$のグラフが曲線$C$と異なる$3$点で交わるとき,$a$の値の範囲を求めよ.
(4)$a$の値は$(3)$で求めた範囲を満たすとする.$x \geqq 0$の範囲で関数$f(x)-g(x)$が最小となるとき,$x$を$a$を用いて表せ.
(5)点$\mathrm{P}$が原点$\mathrm{O}$と一致する場合に,接線$\ell$が曲線$C$と原点以外で交わる点を$\mathrm{Q}$とおき,曲線$C$上において原点$\mathrm{O}$と点$\mathrm{Q}$の間に点$\mathrm{R}$をとる.$\triangle \mathrm{ORQ}$の面積が最大となるとき,点$\mathrm{R}$の座標と$\triangle \mathrm{ORQ}$の面積を求めよ.
福岡女子大学 公立 福岡女子大学 2015年 第2問
$\mathrm{AC}=1$,$\angle \mathrm{B}={30}^\circ$,$\angle \mathrm{C}={90}^\circ$の$\triangle \mathrm{ABC}$がある.辺$\mathrm{AB}$上の点列$\mathrm{P}_1,\ \mathrm{P}_2,\ \cdots$,辺$\mathrm{AC}$上の点列$\mathrm{Q}_1,\ \mathrm{Q}_2,\ \cdots$,辺$\mathrm{BC}$上の点列$\mathrm{R}_1,\ \mathrm{R}_2,\ \cdots$を$\mathrm{R}_1 \to \mathrm{P}_1 \to \mathrm{Q}_1 \to \mathrm{R}_2 \to \mathrm{P}_2 \to \mathrm{Q}_2 \to \cdots$の順で以下を満たすように定める.

$(\mathrm{a})$ $\mathrm{R}_1=\mathrm{C}$
$(\mathrm{b})$ $\mathrm{R}_n \mathrm{P}_n \perp \mathrm{AB}$
$(\mathrm{c})$ $\mathrm{P}_n \mathrm{Q}_n \para\, \mathrm{BC}$
$(\mathrm{d})$ $\mathrm{Q}_n \mathrm{R}_{n+1} \para\, \mathrm{AB}$

ただし,$n$は自然数である.下図は点$\mathrm{R}_1 \to \mathrm{P}_1 \to \cdots \to \mathrm{Q}_3$を示している.$x_n=\mathrm{AQ}_n$とおくとき,以下の問に答えなさい.

(1)$\mathrm{BR}_{n+1}$と$\mathrm{BP}_{n+1}$をそれぞれ$x_n$の式で表しなさい.
(2)$x_{n+1}$を$x_n$の式で表しなさい.
(3)$x_n$を$n$の式で表しなさい.
(図は省略)
福岡女子大学 公立 福岡女子大学 2015年 第4問
どの頂角も${180}^\circ$より小さい四角形$\mathrm{ABCD}$(図$1$)があり,線分$\mathrm{AC}$と線分$\mathrm{BD}$の交点を$\mathrm{W}$とする.この四角形を$2$つの三角形$\triangle \mathrm{ABC}$と$\triangle \mathrm{ACD}$に分割し(図$2$),それぞれの三角形の重心を$\mathrm{G}_1$,$\mathrm{G}_1^\prime$とする.また,同じ四角形を$2$つの三角形$\triangle \mathrm{ABD}$と$\triangle \mathrm{BCD}$に分割し(図$3$),それぞれの三角形の重心を$\mathrm{G}_2$,$\mathrm{G}_2^\prime$とする.さらに線分$\mathrm{G}_1 \mathrm{G}_1^\prime$と線分$\mathrm{G}_2 \mathrm{G}_2^\prime$の交点を$\mathrm{G}$とする.実数$l,\ m$は
\[ \overrightarrow{\mathrm{AC}}=l \overrightarrow{\mathrm{AB}}+m \overrightarrow{\mathrm{AD}} \]
を満たすとする.以下の問に答えなさい.

(1)$\overrightarrow{\mathrm{AG}_1}$,$\overrightarrow{\mathrm{AG}_1^\prime}$,$\overrightarrow{\mathrm{AG}_2}$はそれぞれ,
\[ \overrightarrow{\mathrm{AG}_1}=\frac{1}{3}(\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{AC}}),\quad \overrightarrow{\mathrm{AG}_1^\prime}=\frac{1}{3}(\overrightarrow{\mathrm{AC}}+\overrightarrow{\mathrm{AD}}),\quad \overrightarrow{\mathrm{AG}_2}=\frac{1}{3}(\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{AD}}) \]
となるが,$\overrightarrow{\mathrm{AG}_2^\prime}$を$\overrightarrow{\mathrm{AB}}$,$\overrightarrow{\mathrm{AC}}$,$\overrightarrow{\mathrm{AD}}$を用いて表しなさい.
(2)$0<p_1<1,\ 0<p_2<1$に対して,線分$\mathrm{G}_1 \mathrm{G}_1^\prime$を$p_1:1-p_1$に内分する点を$\mathrm{H}_1$とし,線分$\mathrm{G}_2 \mathrm{G}_2^\prime$を$p_2:1-p_2$に内分する点を$\mathrm{H}_2$とする.このとき,


$\overrightarrow{\mathrm{AH}_1}=(1-p_1) \overrightarrow{\mathrm{AG}_1}+p_1 \overrightarrow{\mathrm{AG}_1^\prime}$
$\overrightarrow{\mathrm{AH}_2}=(1-p_2) \overrightarrow{\mathrm{AG}_2}+p_2 \overrightarrow{\mathrm{AG}_2^\prime}$


となるが,特に$\mathrm{H}_1=\mathrm{H}_2=\mathrm{G}$としたとき,$p_1,\ p_2$を$l,\ m$を用いて表しなさい.
(3)$(2)$と同じく$\mathrm{H}_1=\mathrm{H}_2=\mathrm{G}$としたとき,以下の式が成り立つことを示しなさい.
\[ \frac{\mathrm{G}_1^\prime \mathrm{G}}{\mathrm{G}_1 \mathrm{G}}=\frac{m}{l}=\frac{\mathrm{BW}}{\mathrm{DW}} \]
(図は省略)
三重県立看護大学 公立 三重県立看護大学 2015年 第2問
$a,\ b,\ c$が実数のとき,不等式$a^2+b^2+c^2 \geqq ab+bc+ca$を証明しなさい.
福岡女子大学 公立 福岡女子大学 2015年 第2問
$\mathrm{AC}=1$,$\angle \mathrm{B}={30}^\circ$,$\angle \mathrm{C}={90}^\circ$の$\triangle \mathrm{ABC}$がある.辺$\mathrm{AB}$上の点列$\mathrm{P}_1,\ \mathrm{P}_2,\ \cdots$,辺$\mathrm{AC}$上の点列$\mathrm{Q}_1,\ \mathrm{Q}_2,\ \cdots$,辺$\mathrm{BC}$上の点列$\mathrm{R}_1,\ \mathrm{R}_2,\ \cdots$を$\mathrm{R}_1 \to \mathrm{P}_1 \to \mathrm{Q}_1 \to \mathrm{R}_2 \to \mathrm{P}_2 \to \mathrm{Q}_2 \to \cdots$の順で以下を満たすように定める.

$(\mathrm{a})$ $\mathrm{R}_1=\mathrm{C}$
$(\mathrm{b})$ $\mathrm{R}_n \mathrm{P}_n \perp \mathrm{AB}$
$(\mathrm{c})$ $\mathrm{P}_n \mathrm{Q}_n \para\, \mathrm{BC}$
$(\mathrm{d})$ $\mathrm{Q}_n \mathrm{R}_{n+1} \para\, \mathrm{AB}$

ただし,$n$は自然数である.下図は点$\mathrm{R}_1 \to \mathrm{P}_1 \to \cdots \to \mathrm{Q}_3$を示している.$x_n=\mathrm{AQ}_n$とおくとき,以下の問に答えなさい.

(1)$\mathrm{BR}_{n+1}$と$\mathrm{BP}_{n+1}$をそれぞれ$x_n$の式で表しなさい.
(2)$x_{n+1}$を$x_n$の式で表しなさい.
(3)$x_n$を$n$の式で表しなさい.
(図は省略)
北九州市立大学 公立 北九州市立大学 2015年 第1問
以下の問いの空欄$[ア]$~$[ケ]$に入れるのに適する数値,式を解答箇所に記せ.証明や説明は必要としない.

(1)$x$および$y$は実数とする.点$(x,\ y)$が$x^2+2y^2=2$を満たすとき,$\displaystyle \frac{1}{2}x+y^2$の最大値は$[ア]$,最小値は$[イ]$となる.
(2)半径$r$の円に内接する正$12$角形を考える.この正$12$角形の$1$辺の長さを$1$とすると,円の半径$r$の値は$[ウ]$,正$12$角形の面積は$[エ]$である.
(3)大きさの異なる$3$種類の無地のタイルがある.タイルは長方形で,縦と横の長さがそれぞれ$2 \, \mathrm{cm} \times 9.5 \, \mathrm{cm}$,$3 \, \mathrm{cm} \times 9.5 \, \mathrm{cm}$,$5 \, \mathrm{cm} \times 9.5 \, \mathrm{cm}$である.$15 \, \mathrm{cm} \times 9.5 \, \mathrm{cm}$の長方形の壁にタイルを隙間なく,はみ出ないように貼り付けるとき,$[オ]$通りの貼り付け方が存在する.必ずしも$3$種類すべてのタイルを使わなくてもよいものとする.また,タイルは切断できないものとする.
(4)$\displaystyle x=\frac{2}{\sqrt{5}+1},\ y=\frac{2}{\sqrt{5}-1}$のとき,$x^3+x^2y+xy^2+y^3$の値は$[カ]$,$x^6+y^6$の値は$[キ]$となる.
(5)赤玉が$3$個,白玉が$5$個入っている袋から同時に$4$個の玉を取り出す.このとき,取り出された玉がすべて白玉となる確率は$[ク]$である.少なくとも$2$個の赤玉が取り出される確率は$[ケ]$である.
北九州市立大学 公立 北九州市立大学 2015年 第2問
以下の問いの空欄$[サ]$~$[ヌ]$に入れるのに適する数値,式を解答箇所に記せ.証明や説明は必要としない.

(1)整式$P(x)$を$x^2-1$で割ると$1$余り,$x^2+4x+4$で割ると$x+6$余る.$P(x)$を$x^2+x-2$で割ったときの余りを$ax+b$とする.このとき,定数$a,\ b$の値は$a=[サ]$,$b=[シ]$となる.
(2)点$(1,\ 2)$に関して,円$x^2+y^2-8x+10y+k=0$と対称な円が原点を通るように定数$k$を定めると,$k=[ス]$となり,対称な円の中心は$([セ],\ [ソ])$となる.
(3)$\displaystyle \sin \theta-\cos \theta=\frac{1}{2}$のとき,$\sin 2\theta$の値は$[タ]$となり,$\cos^3 \theta-\sin^3 \theta$の値は$[チ]$となる.
(4)$3 \leqq x \leqq 81$のとき,関数$y=(\log_3 x)^2-\log_3 x^4+5$の最大値と最小値を求めると,$x=[ツ]$のときに最大値$[テ]$をとり,$x=[ト]$のときに最小値$[ナ]$をとる.
(5)数列$\{a_n\}$の初項から第$n$項までの和$S_n$が,$S_n=n^2+8n$で表されるとき,初項$a_1$は$[ニ]$であり,一般項$a_n$は$[ヌ]$である.
高崎経済大学 公立 高崎経済大学 2015年 第1問
次の各問に答えよ.

(1)$3$点$(-2,\ -11)$,$(2,\ -7)$,$(4,\ -23)$を通る放物線$A$をグラフとする$2$次関数を求めよ.さらに,放物線$A$を図示せよ.
(2)$(1)$で示した放物線$A$を,次の座標軸または点に関して,それぞれ対称移動して得られる放物線をグラフとする$2$次関数を求めよ.

$①$ $x$軸 \qquad $②$ $y$軸 \qquad $③$ 原点

(3)$(2)$の$①,\ ②,\ ③$で求めた$3$つの$2$次関数の定義域を$0 \leqq x \leqq 2$とする.このとき,それぞれの関数の最大値と最小値を求めよ.
大阪府立大学 公立 大阪府立大学 2015年 第2問
次の問いに答えよ.

(1)$x \geqq 0$のとき,$\displaystyle x-\frac{x^2}{2} \leqq \log (1+x) \leqq x$が成り立つことを示せ.
(2)自然数$n$に対して,
\[ S_n=\log (n \sqrt{n}+1)+\log (n \sqrt{n}+\sqrt{2})+\cdots +\log (n \sqrt{n}+\sqrt{n})-n \log (n \sqrt{n}) \]
と定めるとき,極限値$\displaystyle \lim_{n \to \infty} S_n$を求めよ.
大阪府立大学 公立 大阪府立大学 2015年 第5問
座標平面上において,原点$\mathrm{O}$を中心とする半径$1$の円$C_0$に,半径$1$の円$C_1$が外接しながらすべることなく回転する.点$\mathrm{A}$を動く円$C_1$の中心とし,点$\mathrm{P}$を円$C_1$の円周上の定点とする.最初,点$\mathrm{A}$は座標$(2,\ 0)$の位置にあり,点$\mathrm{P}$は座標$(1,\ 0)$の位置にある.円$C_1$が円$C_0$の周りを反時計まわりに一周し,点$\mathrm{A}$が座標$(2,\ 0)$に戻ってくるとき,点$\mathrm{P}$のえがく曲線を$C$とする.動径$\mathrm{OA}$が$x$軸の正の部分から角$\theta (0 \leqq \theta \leqq 2\pi)$だけ回転した位置にあるとき,点$\mathrm{P}$の座標を$(x(\theta),\ y(\theta))$とする.このとき,次の問いに答えよ.

(1)点$\mathrm{P}$の座標$(x(\theta),\ y(\theta))$について,
\[ x(\theta)=2 \cos \theta-\cos 2\theta,\quad y(\theta)=2 \sin \theta-\sin 2\theta \]
が成り立つことを示せ.
(2)導関数$\displaystyle \frac{d}{d\theta} x(\theta)$を求め,$x(\theta)$の$\theta$に関する増減表を作成せよ.ただし,凹凸については言及しなくてよい.
(3)曲線$C$で囲まれる図形の面積$S$を求めよ.
スポンサーリンク

「証明」とは・・・

 まだこのタグの説明は執筆されていません。