タグ「証明」の検索結果

43ページ目:全1924問中421問~430問を表示)
お茶の水女子大学 国立 お茶の水女子大学 2015年 第2問
$0<a<b$を満たす実数$a,\ b$に対し,曲線$\displaystyle y=\frac{1}{x}$,$x$軸及び$2$直線$x=a$,$x=b$で囲まれた図形の面積を$S(a,\ b)$で表す.以下の問いに答えよ.

(1)$n$を自然数とする.$S(n,\ 3n)$を求め,この値は$n$によらないことを示せ.
(2)$\displaystyle \lim_{n \to \infty} S(n,\ n+\sqrt{n})=0$が成り立つことを示せ.
(3)次の極限値を求めよ.
\[ \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{2n} S(n,\ n+k) \]
鹿児島大学 国立 鹿児島大学 2015年 第4問
平面上に三角形$\mathrm{ABC}$と点$\mathrm{O}$があり,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおくとき
\[ \overrightarrow{a} \cdot \overrightarrow{b}=\overrightarrow{b} \cdot \overrightarrow{c}=\overrightarrow{c} \cdot \overrightarrow{a} \neq 0 \]
を満たしていると仮定する.辺$\mathrm{BC}$の中点を$\mathrm{M}$,線分$\mathrm{OB}$の中点を$\mathrm{N}$とし,三角形$\mathrm{OBC}$の外心を$\mathrm{P}$とする.このとき,次の各問いに答えよ.

(1)$\mathrm{M} \neq \mathrm{P}$のとき,線分$\mathrm{MP}$と線分$\mathrm{OA}$は平行であることを示せ.
(2)$\overrightarrow{\mathrm{MP}}=t \overrightarrow{a}$とおいて,$\overrightarrow{\mathrm{OP}}$と$\overrightarrow{\mathrm{NP}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$および実数$t$を用いて表せ.
(3)$\overrightarrow{\mathrm{OP}}$と$\overrightarrow{\mathrm{NP}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$を用いて表せ.
電気通信大学 国立 電気通信大学 2015年 第2問
関数$f(t),\ g(t)$を次のように定義する.ただし,$e$は自然対数の底とする.
\[ f(t)=(t-1)e^{-t},\quad g(t)=(t-1)^2e^{-t} \]
$xy$平面上の曲線$C$が,媒介変数$t$を用いて
\[ x=f(t),\quad y=g(t) \quad (1 \leqq t \leqq 3) \]
と表されるとき,以下の問いに答えよ.

(1)$f(t)=g(t)$となる$t$の値を$\alpha,\ \beta (\alpha<\beta)$とする.$\alpha,\ \beta$の値を求めよ.さらに,$\alpha \leqq t \leqq \beta$のとき,$f(t) \geqq g(t)$であることを示せ.
(2)導関数$f^\prime(t),\ g^\prime(t)$をそれぞれ求めよ.さらに,区間$\alpha \leqq t \leqq \beta$において,関数$f(t)$,$g(t)$がともに単調に増加することを示せ.
(3)次の定積分をそれぞれ求めよ.
\[ I_1=\int_0^1 ue^{-2u} \, du,\quad I_2=\int_0^1 u^2 e^{-2u} \, du,\quad I_3=\int_0^1 u^3e^{-2u} \, du \]
(4)曲線$C$と直線$y=x$で囲まれた図形の面積$S$を求めよ.
電気通信大学 国立 電気通信大学 2015年 第4問
数列$\{a_n\}$は初項が$a_1=1$,公差が正の定数$d$の等差数列とする.このとき,自然数の定数$p$を用いて
\[ b_n=a_na_{n+p} \quad (n=1,\ 2,\ 3,\ \cdots) \]
で定まる数列$\{b_n\}$について考える.ただし,$a_na_{n+p}$は$a_n$と$a_{n+p}$の積を表す.以下の問いに答えよ.

(1)数列$\{b_n\}$の階差数列$\{c_n\}$が等差数列であることを示せ.さらに,数列$\{c_n\}$の初項$c_1$と公差$D$を$d,\ p$を用いて表せ.
(2)ある定数$C$を用いて
\[ \frac{1}{b_n}=C \left( \frac{1}{a_n}-\frac{1}{a_{n+p}} \right) \quad (n=1,\ 2,\ 3,\ \cdots) \]
と表すことができる.このとき,$C$を$d,\ p$を用いて表せ.
以下の問いでは,数列$\{b_n\}$が初項から順に
\[ b_1=7,\quad b_2=40,\quad b_3=91,\ \cdots \]
となる場合を考える.
(3)定数$d,\ p$および数列$\{a_n\}$,$\{b_n\}$の一般項をそれぞれ求めよ.
(4)数列$\{b_n\}$に対して,
\[ S_n=\sum_{k=1}^n \frac{1}{b_k} \quad (n=1,\ 2,\ 3,\ \cdots) \]
とおく.極限値$\displaystyle \lim_{n \to \infty}S_n$を求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2015年 第1問
座標平面上に点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(1,\ 0)$,$\mathrm{B}(-1,\ 0)$,$\mathrm{C}(0,\ 2)$,$\mathrm{D}(0,\ 1)$をとる.直線$x=1$を$\ell$,直線$x=-1$を$m$とする.また,$x$軸上に$\mathrm{O}$と異なる点$\mathrm{P}(t,\ 0)$をとり,直線$\mathrm{CP}$と直線$\ell$の交点を$\mathrm{Q}(1,\ u)$,直線$\mathrm{DP}$と直線$m$の交点を$\mathrm{R}(-1,\ v)$とおく.以下の問いに答えよ.

(1)$u,\ v$を$t$を用いて表せ.
(2)$u,\ v$が共に正となるような$t$の範囲と,そのときの台形$\mathrm{QABR}$の面積のとり得る値の範囲を求めよ.
(3)線分$\mathrm{QR}$は$t$に依存しないある定点$\mathrm{E}$を通ることを示せ.また,$\mathrm{E}$の座標を求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2015年 第3問
$x>0$で定義された曲線$y=\log x$を$C$とする.以下の問いに答えよ.

ただし,$\displaystyle \lim_{x \to 0}x \log x=0$を用いてよい.$a$を定数とする.

(1)点$(a,\ 0)$から$C$に何本の接線が引けるか調べよ.
(2)$C$の法線で点$(a,\ 0)$を通るものがちょうど$1$本あることを示せ.
(3)原点$(0,\ 0)$を通る$C$の接線,$x$軸,曲線$C$で囲まれた図形の面積を求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2015年 第2問
$0<a<b$を満たす実数$a,\ b$に対し,曲線$\displaystyle y=\frac{1}{x}$,$x$軸及び$2$直線$x=a$,$x=b$で囲まれた図形の面積を$S(a,\ b)$で表す.以下の問いに答えよ.

(1)$n$を自然数とする.$S(n,\ 3n)$を求め,この値は$n$によらないことを示せ.
(2)$\displaystyle \lim_{n \to \infty} S(n,\ n+\sqrt{n})=0$が成り立つことを示せ.
(3)次の極限値を求めよ.
\[ \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{2n} S(n,\ n+k) \]
お茶の水女子大学 国立 お茶の水女子大学 2015年 第3問
次の問いに答えよ.

(1)不等式
\[ \sqrt{n} \sqrt{a^2+b^2} \leqq a+b \leqq \sqrt{m} \sqrt{a^2+b^2} \]
がすべての負でない実数$a \geqq 0$,$b \geqq 0$に対して成り立つような自然数$m$と$n$の範囲を求めよ.
(2)$m$を$2$以上の自然数,$n$を自然数とする.不等式
\[ \frac{m^{n+1}-1}{n+1}>\frac{m^n-1}{n} \]
が成り立つことを示せ.
(3)$m$を$2$以上の自然数,$n$を自然数とするとき,次の不等式
\[ \comb{mn}{n} \geqq m^n>\sum_{i=0}^{n-1}m^i \]
が成り立つことを示せ.
浜松医科大学 国立 浜松医科大学 2015年 第1問
数列$\{a_n\}$は初項$\displaystyle a_1=\frac{1}{3}$および漸化式
\[ (n+2)a_n-2(n+1)a_{n+1}+(n+1)a_na_{n+1}=0 \quad (n=1,\ 2,\ 3,\ \cdots) \]
を満たす.以下の問いに答えよ.

(1)$a_2$を求めよ.
(2)すべての自然数$n$について$a_n \neq 0$が成り立つことを証明せよ.
(3)数列$\{a_n\}$の一般項を求めよ.
(4)$\displaystyle S_n=\sum_{k=1}^n a_k$とする.このとき,すべての自然数$n$について$S_n<2$が成り立つことを証明せよ.
お茶の水女子大学 国立 お茶の水女子大学 2015年 第1問
座標平面上に点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(1,\ 0)$,$\mathrm{B}(-1,\ 0)$,$\mathrm{C}(0,\ 2)$,$\mathrm{D}(0,\ 1)$をとる.直線$x=1$を$\ell$,直線$x=-1$を$m$とする.また,$x$軸上に$\mathrm{O}$と異なる点$\mathrm{P}(t,\ 0)$をとり,直線$\mathrm{CP}$と直線$\ell$の交点を$\mathrm{Q}(1,\ u)$,直線$\mathrm{DP}$と直線$m$の交点を$\mathrm{R}(-1,\ v)$とおく.以下の問いに答えよ.

(1)$u,\ v$を$t$を用いて表せ.
(2)$u,\ v$が共に正となるような$t$の範囲と,そのときの台形$\mathrm{QABR}$の面積のとり得る値の範囲を求めよ.
(3)線分$\mathrm{QR}$は$t$に依存しないある定点$\mathrm{E}$を通ることを示せ.また,$\mathrm{E}$の座標を求めよ.
スポンサーリンク

「証明」とは・・・

 まだこのタグの説明は執筆されていません。