タグ「証明」の検索結果

37ページ目:全1924問中361問~370問を表示)
福井大学 国立 福井大学 2015年 第1問
三角形$\mathrm{OAB}$があり,$0<p<1$,$0<q<1$として,辺$\mathrm{OA}$を$p:(1-p)$に内分する点を$\mathrm{C}$,辺$\mathrm{OB}$を$q:(1-q)$に内分する点を$\mathrm{D}$とする.線分$\mathrm{AD}$と線分$\mathrm{BC}$の交点を$\mathrm{E}$,線分$\mathrm{AB}$,$\mathrm{OE}$,$\mathrm{CD}$の中点をそれぞれ$\mathrm{F}$,$\mathrm{G}$,$\mathrm{H}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とするとき,以下の問いに答えよ.

(1)$\overrightarrow{\mathrm{OE}}$を$p,\ q,\ \overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(2)$3$点$\mathrm{F}$,$\mathrm{G}$,$\mathrm{H}$は一直線上にあることを示せ.
(3)$\mathrm{OA}=2$,$\mathrm{OB}=3$,$\displaystyle \angle \mathrm{AOB}=\frac{2}{3} \pi$に対して
\[ \mathrm{GF}:\mathrm{GH}=7:2,\quad \mathrm{AB} \perp \mathrm{GF} \]
となるとき,$p$と$q$の値を求めよ.
福井大学 国立 福井大学 2015年 第1問
三角形$\mathrm{OAB}$があり,$0<p<1$,$0<q<1$として,辺$\mathrm{OA}$を$p:(1-p)$に内分する点を$\mathrm{C}$,辺$\mathrm{OB}$を$q:(1-q)$に内分する点を$\mathrm{D}$とする.線分$\mathrm{AD}$と線分$\mathrm{BC}$の交点を$\mathrm{E}$,線分$\mathrm{AB}$,$\mathrm{OE}$,$\mathrm{CD}$の中点をそれぞれ$\mathrm{F}$,$\mathrm{G}$,$\mathrm{H}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とするとき,以下の問いに答えよ.

(1)$\overrightarrow{\mathrm{OE}}$を$p,\ q,\ \overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(2)$3$点$\mathrm{F}$,$\mathrm{G}$,$\mathrm{H}$は一直線上にあることを示せ.
(3)$\mathrm{OA}=2$,$\mathrm{OB}=3$,$\displaystyle \angle \mathrm{AOB}=\frac{2}{3} \pi$に対して
\[ \mathrm{GF}:\mathrm{GH}=7:2,\quad \mathrm{AB} \perp \mathrm{GF} \]
となるとき,$p$と$q$の値を求めよ.
福井大学 国立 福井大学 2015年 第2問
三角形$\mathrm{OAB}$があり,$0<p<1$,$0<q<1$として,辺$\mathrm{OA}$を$p:(1-p)$に内分する点を$\mathrm{C}$,辺$\mathrm{OB}$を$q:(1-q)$に内分する点を$\mathrm{D}$とする.線分$\mathrm{AD}$と線分$\mathrm{BC}$の交点を$\mathrm{E}$,線分$\mathrm{AB}$,$\mathrm{OE}$,$\mathrm{CD}$の中点をそれぞれ$\mathrm{F}$,$\mathrm{G}$,$\mathrm{H}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とするとき,以下の問いに答えよ.

(1)$\overrightarrow{\mathrm{OE}}$を$p,\ q,\ \overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(2)$3$点$\mathrm{F}$,$\mathrm{G}$,$\mathrm{H}$は一直線上にあることを示せ.
(3)$\mathrm{OA}=2$,$\mathrm{OB}=3$,$\displaystyle \angle \mathrm{AOB}=\frac{2}{3} \pi$に対して
\[ \mathrm{GF}:\mathrm{GH}=7:2,\quad \mathrm{AB} \perp \mathrm{GF} \]
となるとき,$p$と$q$の値を求めよ.
福井大学 国立 福井大学 2015年 第4問
座標平面上に,$2$点$\mathrm{A}(-1,\ 0)$,$\mathrm{B}(1,\ 0)$と,原点を中心とする半径$2$の円周上の点$\mathrm{P}(2 \cos \theta,\ 2 \sin \theta)$をとるとき,以下の問いに答えよ.

(1)$\mathrm{P}$を通って,直線$\mathrm{AP}$に直交する直線$\ell$の方程式を求めよ.
(2)$\ell$に関して$\mathrm{A}$と対称な点を$\mathrm{C}$とし,$\ell$と直線$\mathrm{BC}$の交点を$\mathrm{Q}$とおく.線分$\mathrm{BQ}$の長さを$\theta$を用いて表せ.
(3)$\theta$が$0 \leqq \theta<2\pi$の範囲を動くときの点$\mathrm{Q}$の軌跡は楕円であることを示し,その長軸と短軸の長さの比を求めよ.
山梨大学 国立 山梨大学 2015年 第3問
下の図のように,$\mathrm{ABCDE}$を頂点とする正五角形$P_1$を考える.$P_1$の各辺の中点をとり,その中点を順に結び正五角形$P_2$をつくる.さらに,正五角形$P_2$の各辺の中点をとり,その中点を順に結び正五角形$P_3$をつくる.以下,これを繰り返す.正五角形$P_1$の一辺の長さを$1$,正五角形$P_n (n=1,\ 2,\ 3,\ \cdots)$の一辺の長さを$a_n$としたとき,次の問いに答えよ.
(図は省略)

(1)対角線$\mathrm{AC}$と$\mathrm{BD}$の交点を$\mathrm{F}$とする.$\triangle \mathrm{ACD}$と$\triangle \mathrm{DFC}$が相似であることを証明せよ.
(2)対角線$\mathrm{AC}$の長さを求めよ.
(3)$a_n$を$n$の式で表せ.
(4)数列$\{a_n\}$の初項から第$n$項までの和を求めよ.
宮城教育大学 国立 宮城教育大学 2015年 第4問
$\displaystyle f(x)=\frac{x}{(2x-1)(x-2)}$とする.以下の問に答えよ.

(1)$g(x)=2x^3-6x+5$とする.このとき,$-3<\alpha<-1$かつ$g(\alpha)=0$をみたす$\alpha$が存在することを示せ.さらに,$x<\alpha$では$g(x)<0$であり,$x>\alpha$では$g(x)>0$であることを示せ.
(2)$(1)$の$\alpha$を用いて,関数$y=f(x)$の増減,極値,グラフの凹凸を調べ,そのグラフの概形をかけ.
宮城教育大学 国立 宮城教育大学 2015年 第2問
実数$p,\ q$に対して,
\[ f(x)=x^2+px+q,\quad g(x)=x^3-3x \]
とおく.$2$次方程式$f(x)=0$の$2$つの解を$\alpha,\ \beta$として,次の問に答えよ.

(1)$2$次方程式の解と係数の関係を用いて,積$g(\alpha)g(\beta)$を$p,\ q$を用いて表せ.
(2)$g(\alpha)=0$または$g(\beta)=0$であるとき,点$(p,\ q)$の集合を座標平面上に図示せよ.
(3)$g(\alpha)=0$または$g(\beta)=0$ならば,$\alpha$と$\beta$は実数であることを示せ.
茨城大学 国立 茨城大学 2015年 第4問
鋭角三角形$\mathrm{ABC}$について,点$\mathrm{B}$,$\mathrm{C}$から対辺に下ろした垂線をそれぞれ$\mathrm{BD}$,$\mathrm{CE}$とし,$2$線分$\mathrm{BD}$,$\mathrm{CE}$の交点を$\mathrm{F}$とするとき,次の各問に答えよ.

(1)$\mathrm{BE} \cdot \mathrm{BA}+\mathrm{CD} \cdot \mathrm{CA}=\mathrm{BF} \cdot \mathrm{BD}+\mathrm{CF} \cdot \mathrm{CE}$を示せ.
(2)$\mathrm{BC}^2=\mathrm{BE} \cdot \mathrm{BA}+\mathrm{CD} \cdot \mathrm{CA}$を示せ.
滋賀医科大学 国立 滋賀医科大学 2015年 第2問
$a<b$とする.放物線$y=x^2$上の$2$点$\mathrm{A}(a,\ a^2)$,$\mathrm{B}(b,\ b^2)$におけるそれぞれの接線の交点を$\mathrm{C}$とおく.$\angle \mathrm{ACB}={60}^\circ$であるとする.

(1)$a+b=0$のとき,$a$を求めよ.
(2)ある正の実数$k$を用いて$\overrightarrow{\mathrm{CA}}=-k(1,\ 2a)$,$\overrightarrow{\mathrm{CB}}=k(1,\ 2b)$と表されることを示せ.
(3)$\displaystyle a<-\frac{\sqrt{3}}{6},\ b>\frac{\sqrt{3}}{6}$を示せ.
(4)$b$を$a$を用いて表せ.
鳴門教育大学 国立 鳴門教育大学 2015年 第1問
$\triangle \mathrm{ABC}$の辺$\mathrm{BC}$,$\mathrm{CA}$,$\mathrm{AB}$上に,それぞれ点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$をとります.ただし,これらの点は頂点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$とは異なるものとします.$\triangle \mathrm{ARQ}$,$\triangle \mathrm{RBP}$,$\triangle \mathrm{QPC}$の外接円を,それぞれ$\mathrm{O}_1$,$\mathrm{O}_2$,$\mathrm{O}_3$とするとき,次の問いに答えなさい.

(1)円$\mathrm{O}_1$,$\mathrm{O}_2$が$2$点で交わっているとします.これら$2$つの円が$\mathrm{R}$以外で交わる点を$\mathrm{X}$とするとき,円$\mathrm{O}_3$も$\mathrm{X}$を通ることを証明しなさい.
(2)円$\mathrm{O}_1$,$\mathrm{O}_2$が接しているとき,円$\mathrm{O}_3$は点$\mathrm{R}$を通ることを証明しなさい.
スポンサーリンク

「証明」とは・・・

 まだこのタグの説明は執筆されていません。