タグ「証明」の検索結果

35ページ目:全1924問中341問~350問を表示)
東京海洋大学 国立 東京海洋大学 2015年 第4問
座標平面上の曲線$y=x^2(1-x)$を$C$とし,直線$y=-x$を$\ell$とする.数列$\{a_n\} (n=1,\ 2,\ 3,\ \cdots)$を次のように定める.$\displaystyle a_1=\frac{2}{5}$とし,$x=a_n (n=1,\ 2,\ 3,\ \cdots)$における$C$の接線と$\ell$の交点の$x$座標を$a_{n+1}$とする.このとき次の問に答えよ.

(1)$n$を自然数とするとき,$a_{n+1}$を$a_n$で表せ.
(2)$n$を自然数とするとき,$0<a_{n+1}<{a_n}^2$を示せ.
富山大学 国立 富山大学 2015年 第1問
$m$を実数とする.方程式
\[ mx^2-my^2+(1-m^2)xy+5(1+m^2)y-25m=0 \cdots\cdots (*) \]
を考える.このとき,次の問いに答えよ.

(1)$xy$平面において,方程式$(*)$が表す図形は$2$直線であることを示せ.
(2)$(1)$で求めた$2$直線は$m$の値にかかわらず,それぞれ定点を通る.これらの定点を求めよ.
(3)$m$が$-1 \leqq m \leqq 3$の範囲を動くとき,$(1)$で求めた$2$直線の交点の軌跡を図示せよ.
富山大学 国立 富山大学 2015年 第3問
次の問いに答えよ.

(1)関数$f(x)$は区間$[a,\ b]$で連続であり,区間$(a,\ b)$で第$2$次導関数$f^{\prime\prime}(x)$をもつとする.さらに,区間$(a,\ b)$で$f^{\prime\prime}(x)<0$が成り立つとする.$y=g(x)$を$2$点$(a,\ f(a))$,$(b,\ f(b))$を通る直線の方程式とするとき,区間$(a,\ b)$で常に$f(x)>g(x)$であることを示せ.
(2)$n$を$2$以上の自然数とするとき,$j=1,\ 2,\ \cdots,\ n-1$について
\[ \frac{\log j+\log (j+1)}{2}<\int_j^{j+1} \log x \, dx \]
が成り立つことを示せ.
(3)$n$を$2$以上の自然数とするとき,次の不等式が成り立つことを示せ.
\[ \sqrt{n!(n-1)!}<n^n e^{-n+1} \]
富山大学 国立 富山大学 2015年 第1問
次の問いに答えよ.

(1)関数$f(x)$は区間$[a,\ b]$で連続であり,区間$(a,\ b)$で第$2$次導関数$f^{\prime\prime}(x)$をもつとする.さらに,区間$(a,\ b)$で$f^{\prime\prime}(x)<0$が成り立つとする.$y=g(x)$を$2$点$(a,\ f(a))$,$(b,\ f(b))$を通る直線の方程式とするとき,区間$(a,\ b)$で常に$f(x)>g(x)$であることを示せ.
(2)$n$を$2$以上の自然数とするとき,$j=1,\ 2,\ \cdots,\ n-1$について
\[ \frac{\log j+\log (j+1)}{2}<\int_j^{j+1} \log x \, dx \]
が成り立つことを示せ.
(3)$n$を$2$以上の自然数とするとき,次の不等式が成り立つことを示せ.
\[ \sqrt{n!(n-1)!}<n^n e^{-n+1} \]
富山大学 国立 富山大学 2015年 第2問
関数$f(x)$は区間$[a,\ b]$で連続であり,区間$(a,\ b)$で第$2$次導関数$f^{\prime\prime}(x)$をもつとする.さらに,区間$(a,\ b)$で$f^{\prime\prime}(x)<0$が成り立つとする.このとき,次の問いに答えよ.

(1)$\displaystyle f(x)>\frac{1}{b-a} \{(b-x)f(a)+(x-a)f(b) \} (a<x<b)$が成り立つことを示せ.
(2)$c$が$a<c<b$を満たすならば
\[ f(x) \leqq f^\prime(c)(x-c)+f(c) \quad (a<x<b) \]
が成り立つことを示せ.
群馬大学 国立 群馬大学 2015年 第2問
数列$\{a_n\}$,$\{b_n\}$,$\{c_n\}$,$\{d_n\}$は,初項がそれぞれ$a_1=a$,$b_1=b$,$c_1=c$,$d_1=d$で与えられ,漸化式
\[ a_{n+1}=2a_n+b_n,\quad b_{n+1}=a_n+2b_n,\quad c_{n+1}=2c_n+d_n,\quad d_{n+1}=c_n+2d_n \]
を満たす.ただし,$a,\ b,\ c,\ d$は$\displaystyle \frac{c}{a}<\frac{d}{b}$を満たす正の数とする.

(1)$\displaystyle \frac{c}{a}<\frac{c+d}{a+b}<\frac{d}{b}$が成り立つことを証明せよ.
(2)すべての自然数$n$について$\displaystyle \frac{c_n}{a_n}<\frac{d_n}{b_n}$が成り立つことを,数学的帰納法によって証明せよ.
(3)$a=2,\ b=1$のとき,数列$\{a_n\}$の一般項を求めよ.
群馬大学 国立 群馬大学 2015年 第2問
数列$\{a_n\}$,$\{b_n\}$,$\{c_n\}$,$\{d_n\}$は,初項がそれぞれ$a_1=a$,$b_1=b$,$c_1=c$,$d_1=d$で与えられ,漸化式
\[ a_{n+1}=2a_n+b_n,\quad b_{n+1}=a_n+2b_n,\quad c_{n+1}=2c_n+d_n,\quad d_{n+1}=c_n+2d_n \]
を満たす.ただし,$a,\ b,\ c,\ d$は$\displaystyle \frac{c}{a}<\frac{d}{b}$を満たす正の数とする.

(1)$\displaystyle \frac{c}{a}<\frac{c+d}{a+b}<\frac{d}{b}$が成り立つことを証明せよ.
(2)すべての自然数$n$について$\displaystyle \frac{c_n}{a_n}<\frac{d_n}{b_n}$が成り立つことを,数学的帰納法によって証明せよ.
(3)$a=2,\ b=1$のとき,数列$\{a_n\}$の一般項を求めよ.
群馬大学 国立 群馬大学 2015年 第1問
数列$\{a_n\}$,$\{b_n\}$,$\{c_n\}$,$\{d_n\}$は,初項がそれぞれ$a_1=a$,$b_1=b$,$c_1=c$,$d_1=d$で与えられ,漸化式
\[ a_{n+1}=2a_n+b_n,\quad b_{n+1}=a_n+2b_n,\quad c_{n+1}=2c_n+d_n,\quad d_{n+1}=c_n+2d_n \]
を満たす.ただし,$a,\ b,\ c,\ d$は$\displaystyle \frac{c}{a}<\frac{d}{b}$を満たす正の数とする.

(1)$\displaystyle \frac{c}{a}<\frac{c+d}{a+b}<\frac{d}{b}$が成り立つことを証明せよ.
(2)すべての自然数$n$について$\displaystyle \frac{c_n}{a_n}<\frac{d_n}{b_n}$が成り立つことを,数学的帰納法によって証明せよ.
(3)$a=2,\ b=1$のとき,数列$\{a_n\}$の一般項を求めよ.
宮城教育大学 国立 宮城教育大学 2015年 第2問
実数$p,\ q$に対して,
\[ f(x)=x^2+px+q,\quad g(x)=x^3-3x \]
とおく.$2$次方程式$f(x)=0$の$2$つの解を$\alpha,\ \beta$として,次の問に答えよ.

(1)$2$次方程式の解と係数の関係を用いて,積$g(\alpha)g(\beta)$を$p,\ q$を用いて表せ.
(2)$g(\alpha)=0$または$g(\beta)=0$であるとき,点$(p,\ q)$の集合を座標平面上に図示せよ.
(3)$g(\alpha)=0$または$g(\beta)=0$ならば,$\alpha$と$\beta$は実数であることを示せ.
東京海洋大学 国立 東京海洋大学 2015年 第3問
$\mathrm{O}$を原点とする座標平面上に放物線$C:y=x^2$と点$\mathrm{P}(a,\ b)$(ただし,$a>0$かつ$b<a^2$)がある.$\mathrm{P}$を通り$y$軸に平行な直線$\ell$が,$C$および$x$軸と交わる点をそれぞれ$\mathrm{Q}$,$\mathrm{R}$とする.$\overrightarrow{\mathrm{PQ}}=\overrightarrow{\mathrm{QM}}$となるように点$\mathrm{M}$を,また$\overrightarrow{\mathrm{PR}}=\overrightarrow{\mathrm{ON}}$となるように点$\mathrm{N}$をとる.直線$\mathrm{MN}$が$C$と交わる点を$\mathrm{A}$,$\mathrm{B}$とする.

(1)直線$\mathrm{AP}$および直線$\mathrm{BP}$は,それぞれ$C$の接線であることを示せ.
(2)$C$と線分$\mathrm{AB}$で囲まれる図形の面積は,$\ell$により二等分されることを示せ.
スポンサーリンク

「証明」とは・・・

 まだこのタグの説明は執筆されていません。