タグ「証明」の検索結果

22ページ目:全1924問中211問~220問を表示)
広島工業大学 私立 広島工業大学 2016年 第2問
中心$\mathrm{O}$,半径$2$の円に内接する$\triangle \mathrm{ABC}$において,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とする.また,$\mathrm{CD}$をこの円の直径とし,$\overrightarrow{\mathrm{DA}}+\overrightarrow{\mathrm{CB}}=\overrightarrow{p}$とするとき,次の問いに答えよ.

(1)$\overrightarrow{p}$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(2)$\overrightarrow{c}=-\overrightarrow{p}$が成り立つとき,内積$\overrightarrow{a} \cdot \overrightarrow{b}$を求め,$\angle \mathrm{AOB}$を求めよ.
(3)$k$が実数で$\overrightarrow{c}=k \overrightarrow{p}$が成り立つとき,$\mathrm{AC}=\mathrm{BC}$であることを証明せよ.
広島工業大学 私立 広島工業大学 2016年 第6問
四角形$\mathrm{ABCD}$において,$\triangle \mathrm{ABC}$は$\angle \mathrm{C}={90}^\circ$の直角二等辺三角形,$\triangle \mathrm{ACD}$は正三角形である.$\mathrm{AC}=1$のとき,次の問いに答えよ.

(1)四角形$\mathrm{ABCD}$の面積を求めよ.
(2)$\triangle \mathrm{BCD}$の面積を求めよ.
(3)$\mathrm{BD}^2$を求めよ.
(4)$(3)$を用いて,$\displaystyle \cos {105}^\circ=\frac{\sqrt{2}-\sqrt{6}}{4}$を示せ.
聖マリアンナ医科大学 私立 聖マリアンナ医科大学 2016年 第4問
$p$を素数とするとき,以下の命題を証明しなさい.

(1)$a,\ b,\ c$を整数とするとき,$a^3+pb^3+p^2c^3-p^3abc=0$ならば,$a$は$p$の倍数である.
(2)$a,\ b,\ c$を整数とするとき,$a^3+pb^3+p^2c^3-p^3abc=0$ならば,$a,\ b,\ c$はどれも$p$の倍数である.
(3)$a,\ b,\ c$を整数とするとき,$a^3+pb^3+p^2c^3-p^3abc=0$ならば,$a=b=c=0$である.
(4)$x,\ y,\ z$を有理数とするとき,$x^3+py^3+p^2z^3-p^3xyz=0$ならば,$x=y=z=0$である.
龍谷大学 私立 龍谷大学 2016年 第2問
$4$次方程式
\[ x^4+2x^3+3x^2+2x+2=0 \quad \cdots\cdots (*) \]
について,次の問いに答えなさい.ただし,虚数単位を$i$とする.

(1)$x=i$が$(*)$の解であることを示しなさい.
(2)$(*)$のすべての解を求めなさい.
玉川大学 私立 玉川大学 2016年 第4問
曲線$C:y=x^3-12x$とその上の点$\mathrm{A}(1,\ -11)$がある.このとき,次の問いに答えよ.

(1)点$\mathrm{A}$を通る曲線$C$の接線$2$本を求めよ.
(2)曲線$y=x^3+px^2+qx+r$と直線$y=mx+n$が異なる$3$点で交わるとき,その交点の$x$座標を左から$a,\ b,\ c$とする.曲線と直線の囲む部分の左側,右側の面積をそれぞれ$S$,$S^\prime$とするとき,
\[ S-S^\prime=\frac{1}{6}(c-a)^3 \left( b-\frac{a+c}{2} \right) \]
を示せ.
(3)点$\mathrm{A}$を通り,$(1)$で求めた$2$直線の傾きの間の値を傾きとしてもつ直線$\ell$と曲線$C$の囲む$2$つの部分の面積が等しい.このとき,直線$\ell$を求めよ.ここで,$(2)$から$\displaystyle b=\frac{a+c}{2}$のとき,$S=S^\prime$となることに注意せよ.
京都女子大学 私立 京都女子大学 2016年 第2問
点$\mathrm{A}$を中心とする半径$3$の円$\mathrm{A}$,点$\mathrm{B}$を中心とする半径$4$の円$\mathrm{B}$,点$\mathrm{C}$を中心とする半径$5$の円$\mathrm{C}$の$3$つの円が互いに外接している.円$\mathrm{A}$と円$\mathrm{B}$との接点を$\mathrm{P}$,円$\mathrm{B}$と円$\mathrm{C}$との接点を$\mathrm{Q}$,円$\mathrm{C}$と円$\mathrm{A}$との接点を$\mathrm{R}$とおく.このとき,次の問に答えよ.

(1)$\angle \mathrm{BAC}=\theta$とおく.このとき,$\cos \theta$の値と$\triangle \mathrm{ABC}$の面積を求めよ.
(2)点$\mathrm{P}$における円$\mathrm{A}$の接線と点$\mathrm{R}$における円$\mathrm{A}$の接線との交点を$\mathrm{I}$とおく.直線$\mathrm{AI}$は$\angle \mathrm{PAR}$を二等分していることを証明せよ.
(3)$3$点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$を通る円の半径を求めよ.
大阪市立大学 公立 大阪市立大学 2016年 第1問
$x,\ y$を整数とするとき,次の問いに答えよ.

(1)$x^2+y^2$が$3$で割り切れるとき,$x$と$y$はともに$3$の倍数であることを示せ.
(2)$x^2+y^2$が$27$で割り切れるとき,$x$と$y$はともに$9$の倍数であることを示せ.
(3)$n$を正の整数とする.$x^2+y^2$が$3^{2n-1}$で割り切れるとき,$x$と$y$はともに$3^n$の倍数であることを示せ.
大阪市立大学 公立 大阪市立大学 2016年 第1問
$r$は$0<r<1$を満たす実数とする.次の問いに答えよ.ただし,$0^r=0$と定める.

(1)$a \geqq 0$のとき,$x \geqq 0$について,不等式$(a+x)^r \leqq a^r+x^r$を示せ.

(2)$a_k \geqq 0 (k=1,\ 2,\ \cdots,\ n)$のとき,不等式$\displaystyle \left( \sum_{k=1}^n a_k \right)^r \leqq \sum_{k=1}^n {a_k}^r$を示せ.
大阪市立大学 公立 大阪市立大学 2016年 第4問
$4$面体$\mathrm{OABC}$は,
\[ \begin{array}{lll}
\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OA}}=9, & \overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}=3, & \overrightarrow{\mathrm{OB}} \cdot \overrightarrow{\mathrm{OB}}=14, \phantom{\frac{1}{[ ]}} \\
\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OC}}=1, & \overrightarrow{\mathrm{OB}} \cdot \overrightarrow{\mathrm{OC}}=3, & \overrightarrow{\mathrm{AC}} \cdot \overrightarrow{\mathrm{BC}}=5 \phantom{\frac{[ ]}{[ ]}}
\end{array} \]
を満たすものとする.また,直線$\mathrm{AB}$上の点$\mathrm{D}$を,$\overrightarrow{\mathrm{OD}}$と$\overrightarrow{\mathrm{AB}}$が垂直になるようにとり,実数$m$を$\overrightarrow{\mathrm{OD}}=m \overrightarrow{\mathrm{OA}}+(1-m) \overrightarrow{\mathrm{OB}}$となるように定める.$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{OB}}$,$\overrightarrow{c}=\overrightarrow{\mathrm{OC}}$とおくとき,次の問いに答えよ.

(1)$m$の値を求めよ.
(2)$m<s<1$を満たす実数$s$に対し,辺$\mathrm{AB}$を$(1-s):s$に内分する点$\mathrm{P}$をとる.さらに,直線$\mathrm{AC}$上の点$\mathrm{Q}$を,$\overrightarrow{\mathrm{OP}}$と$\overrightarrow{\mathrm{PQ}}$が垂直になるようにとり,実数$t$を$\overrightarrow{\mathrm{OQ}}=t \overrightarrow{a}+(1-t) \overrightarrow{c}$となるように定める.$t$を$s$を用いて表せ.
(3)$(2)$の$t$に対し,$0<t<1$が成り立つことを示せ.
大阪市立大学 公立 大阪市立大学 2016年 第2問
次の問いに答えよ.

(1)$0$以上の整数$n$に対し,$\displaystyle C_n=\int_0^{\frac{\pi}{2}} \cos^n x \, dx$とおくとき,$\displaystyle C_{n+2}=\frac{n+1}{n+2}C_n$を示せ.ただし,$\cos^0 x=1$と定める.
(2)座標空間内で,連立不等式
\[ x^2+y^2 \leqq 1,\quad z+2x^2-x^4 \leqq 1,\quad x \geqq 0,\quad y \geqq 0,\quad z \geqq 0 \]
の表す領域の体積を求めよ.
スポンサーリンク

「証明」とは・・・

 まだこのタグの説明は執筆されていません。