タグ「証明」の検索結果

18ページ目:全1924問中171問~180問を表示)
富山大学 国立 富山大学 2016年 第2問
次の問いに答えよ.

(1)定積分$\displaystyle \int_0^{\frac{\sqrt{3}}{2}} \frac{x^2}{\sqrt{1-x^2}} \, dx$の値を求めよ.

(2)$3$以上の整数$n$に対して,不等式
\[ \int_0^{\frac{\sqrt{3}}{2}} \frac{x^2}{\sqrt{1-x^n}} \, dx<\frac{\pi}{6} \]
が成り立つことを示せ.
富山大学 国立 富山大学 2016年 第3問
$n$を$1$以上の整数とするとき,次の問いに答えよ.

(1)$\sqrt{n}$が有理数ならば,$\sqrt{n}$は整数であることを示せ.
(2)$\sqrt{n}$と$\sqrt{n+1}$が共に有理数であるような$n$は存在しないことを示せ.
(3)$\sqrt{n+1}-\sqrt{n}$は無理数であることを示せ.
電気通信大学 国立 電気通信大学 2016年 第2問
等比数列$\{a_n\}$と等差数列$\{b_n\}$を次の通りとする.
\[ a_n=\left( \frac{1}{\sqrt{2}} \right)^{n-3},\quad b_n=\frac{3 \pi (n-1)}{4} \quad (n=1,\ 2,\ 3,\ \cdots) \]
これらを用いて,座標平面上の点$\mathrm{P}_n$を
\[ \mathrm{P}_n (a_n \cos b_n,\ a_n \sin b_n) \quad (n=1,\ 2,\ 3,\ \cdots) \]
で定める.このとき,以下の問いに答えよ.

(1)点$\mathrm{P}_4$が線分$\mathrm{P}_1 \mathrm{P}_2$の中点であることを示せ.
(2)線分$\mathrm{P}_n \mathrm{P}_{n+1}$の長さ$l_n$を$n$の式で表せ.
(3)極限値$\displaystyle L=\lim_{n \to \infty} \sum_{k=1}^n l_k$を求めよ.
(4)座標平面上の曲線$C$が媒介変数$t$と定数$\alpha,\ \beta$を用いて,
\[ x=2^{\alpha t+\beta} \cos t,\quad y=2^{\alpha t+\beta} \sin t \]
と表されるとする.曲線$C$が$t=0$で点$\mathrm{P}_1$を通り,$\displaystyle t=\frac{3 \pi}{4}$で点$\mathrm{P}_2$を通るとき,$\alpha,\ \beta$の値を求めよ.
(5)$(4)$で求めた$\alpha,\ \beta$の値に対し,曲線$C$がすべての点$\mathrm{P}_n (n=1,\ 2,\ 3,\ \cdots)$を通ることを示せ.
富山大学 国立 富山大学 2016年 第1問
関数$f(x),\ g(x)$に対して,$\displaystyle h(x)=\int_0^x f(x-t)g(t) \, dt$で定義される関数$h(x)$を$(f * g)(x)$と書くことにする.このとき,次の問いに答えよ.

(1)$(f * g)(x)=(g * f)(x)$が成り立つことを示せ.
(2)$g(x)=e^{-x}$とし,関数$f_1(x),\ f_2(x),\ \cdots$を
\[ f_1(x)=1-e^{-x},\quad f_n(x)=(f_{n-1} * g)(x) \quad (n=2,\ 3,\ \cdots) \]
によって定義する.

(i) 整数$n$が$2$以上のとき,${f_n}^\prime(x)$を$f_n(x),\ f_{n-1}(x)$を用いて表せ.
(ii) $h_n(x)=e^x {f_n}^\prime(x) (n=1,\ 2,\ \cdots)$とおくとき,$3$以上の整数$n$に対して,${h_n}^\prime(x)$を$h_{n-1}(x)$を用いて表せ.
(iii) $h_n(x)$を求めよ.
富山大学 国立 富山大学 2016年 第2問
次の問いに答えよ.

(1)素数$p$に対して,$\sqrt{p}$は無理数であることを示せ.
(2)$p,\ q$を異なる素数とする.このとき,整数$k,\ m,\ n$が
\[ k+m \sqrt{p}+n \sqrt{q}=0 \]
を満たすならば,$k=0$,$m=0$,$n=0$であることを示せ.
富山大学 国立 富山大学 2016年 第1問
次の問いに答えよ.

(1)定積分$\displaystyle \int_0^{\frac{\sqrt{3}}{2}} \frac{x^2}{\sqrt{1-x^2}} \, dx$の値を求めよ.

(2)$3$以上の整数$n$に対して,不等式
\[ \int_0^{\frac{\sqrt{3}}{2}} \frac{x^2}{\sqrt{1-x^n}} \, dx<\frac{\pi}{6} \]
が成り立つことを示せ.
富山大学 国立 富山大学 2016年 第2問
次の条件によって定められる数列$\{a_n\}$がある.
\[ a_1=-\frac{1}{5},\quad a_n-a_{n+1}=2(3n+1)(n-3)a_na_{n+1} \quad (n=1,\ 2,\ \cdots) \]
このとき,次の問いに答えよ.

(1)$1$以上の整数$n$に対し,$a_n \neq 0$であることを示せ.
(2)$a_n$を$n$を用いて表せ.
(3)$a_n<0$を満たす$a_n$の値のうち,最大のものを$M$とする.$a_n=M$であるような$n$を求めよ.
福井大学 国立 福井大学 2016年 第1問
以下の問いに答えよ.

(1)方程式$65x+31y=1$の整数解をすべて求めよ.
(2)$65x+31y=2016$を満たす正の整数の組$(x,\ y)$を求めよ.
(3)$2016$以上の整数$m$は,正の整数$x,\ y$を用いて$m=65x+31y$と表せることを示せ.
福井大学 国立 福井大学 2016年 第4問
$a$を正の定数とし,$f(x)=(x+a) \log x$とする.曲線$C:y=f(x)$上の点$\mathrm{P}(a,\ f(a))$における接線$\ell$が原点を通るとき,以下の問いに答えよ.

(1)$a$の値と,接線$\ell$の方程式を求めよ.
(2)曲線$C$と$x$軸,および接線$\ell$とで囲まれた図形を,$y$軸の周りに$1$回転させてできる立体の体積$V$を求めよ.
(3)定数$k$が$\displaystyle k \geqq \frac{1}{a}$を満たすとき,関数$g(x)=(x+k) \log x$は極値を持たないことを示せ.
福井大学 国立 福井大学 2016年 第3問
原点を$\mathrm{O}$とする$xy$平面上に,$\mathrm{F}(5,\ 0)$と$\mathrm{F}^\prime(-5,\ 0)$とを焦点とし,直線$\ell:y=kx$と直線$\ell^\prime:y=-kx$とを漸近線とする双曲線$C$がある.$C$上に点$\mathrm{P}$をとるとき,以下の問いに答えよ.ただし,$k$は正の定数とする.

(1)双曲線$C$の方程式を求めよ.
(2)点$\mathrm{P}$を通り,$\ell,\ \ell^\prime$に平行な直線をそれぞれ$m,\ m^\prime$とする.$4$つの直線$\ell,\ \ell^\prime,\ m,\ m^\prime$で囲まれた平行四辺形の面積を$S$とするとき,$S$は$C$上の点$\mathrm{P}$のとり方によらずに一定であることを示せ.
(3)$k=2$のとき,$\mathrm{PF} \cdot \mathrm{PF}^\prime=2 \mathrm{OP}^2$をみたす$C$上の点$\mathrm{P}$の座標を求めよ.ただし,$\mathrm{P}$は第$1$象限にあるものとする.
スポンサーリンク

「証明」とは・・・

 まだこのタグの説明は執筆されていません。