タグ「証明」の検索結果

164ページ目:全1924問中1631問~1640問を表示)
高知工科大学 公立 高知工科大学 2011年 第4問
次の各問に答えよ.

(1)$x>0$のとき,不等式$\displaystyle e^x>1+x+\frac{x^2}{2}$が成り立つことを証明せよ.
(2)$\displaystyle \lim_{x \to \infty} xe^{-x}=0$を証明せよ.
(3)関数$y=xe^{-x}$の増減・凹凸を調べ,そのグラフを描け.
(4)$n$を自然数とする.$\displaystyle I_n=\int_0^n xe^{-x}\, dx$を計算し,$\displaystyle \lim_{n \to \infty}I_n$を求めよ.
高知工科大学 公立 高知工科大学 2011年 第3問
0以上の整数$n$に対して
\[ a_n=\int_0^1 e^{-x}x^n \, dx \quad (n=0,\ 1,\ 2,\ \cdots) \]
とおく.ここで$e$は自然対数の底である.次の各問に答えよ.

(1)$a_0$と$a_1$を求めよ.
(2)$a_{n+1}$と$a_n$の間に成り立つ関係式を求めよ.
(3)等式
\[ \frac{a_n}{n!}=1-\frac{1}{e}\left(\frac{1}{0!}+\frac{1}{1!}+\frac{1}{2!}+\cdots+\frac{1}{n!} \right) \]
が成り立つことを証明せよ.
(4)次式が成り立つことを証明せよ.
\[ \maru{1} \ 0 \leqq a_n \leqq a_0 \qquad \maru{2} \ \lim_{n \to \infty} \left( \frac{1}{0!}+\frac{1}{1!}+\frac{1}{2!}+\cdots+\frac{1}{n!} \right)=e \]
広島市立大学 公立 広島市立大学 2011年 第2問
次の問いに答えよ.

(1)3つのサイコロを同時にふるとき,出る目の最大値と最小値を考える.

\mon[(i)] 最大値が3かつ最小値が2となる確率を求めよ.
\mon[(ii)] 最大値と最小値の差が2以上となる確率を求めよ.

(2)$a,\ b,\ c$は正の数とする.$(b+c-a)(c+a-b)(a+b-c)>0$であるための必要十分条件は,$b+c>a$かつ$c+a>b$かつ$a+b>c$であることを証明せよ.
首都大学東京 公立 首都大学東京 2011年 第3問
2次の正方行列$A=\biggl( \begin{array}{cc}
a & b \\
c & d
\end{array} \biggr)$のすべての成分は正であるとする.以下の問いに答えなさい.

(1)$t$の2次方程式
\[ t^2-(a+d)t+ad-bc=0 \cdots\cdots \ (*) \]
が異なる2つの実数解をもつことを示し,また,大きい方の解は正であることを示しなさい.
(2)$(*)$の大きい方の解を$t=\beta$と表す.実数$y$で,
\[ (A-\beta E) \biggl( \begin{array}{c}
b \\
y
\end{array} \biggr) = \biggl( \begin{array}{c}
0 \\
0
\end{array} \biggr) \]
をみたすものを求めなさい.ただし,$E$は2次の単位行列とする.
(3)(2)で求めた$y$が正であることを示しなさい.
広島市立大学 公立 広島市立大学 2011年 第3問
平面上の三角形ABCの頂点A,B,Cの位置ベクトルをそれぞれ$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$とするとき,以下の問いに答えよ.

(1)線分ABの垂直二等分線を$\ell$とする.$\ell$上の点Pの位置ベクトルを$\overrightarrow{p}$とするとき,直線$\ell$のベクトル方程式は$\displaystyle \overrightarrow{p} \cdot (\overrightarrow{b} - \overrightarrow{a})=\frac{1}{2}(|\overrightarrow{b}|^2-|\overrightarrow{a}|^2)$で与えられることを示せ.
(2)(1)の結果を用いて,三角形ABCの3つの辺の垂直二等分線が1点Dで交わることを示せ.
(3)(2)で定まる点Dの位置ベクトル$\overrightarrow{d}$が,$\displaystyle \overrightarrow{d}=\frac{4}{7}\overrightarrow{a}+\frac{4}{7}\overrightarrow{b}-\frac{1}{7}\overrightarrow{c}$を満たすものとする.

(4)辺ABの中点をMとするとき,3点C,M,Dは一直線上にあることを示し,$\text{CM}:\text{MD}$を求めよ.
(5)三角形ABCの三辺の長さの比$\text{BC}:\text{CA}:\text{AB}$を求めよ.
大阪府立大学 公立 大阪府立大学 2011年 第2問
$f(x)=e^{-x}\cos x$とする.

(1)$e^{-x}\sin x-e^{-x}\cos x$を微分せよ.
(2)定積分$\displaystyle \int_0^{\frac{\pi}{2}} f(x) \, dx$を求めよ.
(3)自然数$n$に対して,
\[ S_n=\frac{1}{n}\left\{ f \left( \frac{\pi}{2n} \right)+f \left( \frac{2\pi}{2n} \right)+f \left( \frac{3\pi}{2n} \right)+\cdots + f \left( \frac{n\pi}{2n} \right) \right\} \]
とおく.次の式が成り立つことを示せ.
\[ S_n<\frac{2}{\pi} \int_0^{\frac{\pi}{2}} f(x) \, dx < S_n + \frac{1}{n} \]
(4)$\displaystyle \lim_{n \to \infty} S_n$を求めよ.
大阪府立大学 公立 大阪府立大学 2011年 第4問
$k$を正の定数とする.直線$y=kx$を$\ell$とし,原点Oを通り直線$\ell$に垂直な直線を$m$とする.2次正方行列$A$で表される1次変換を$f$とする.$f$により,直線$\ell$上の点は自分自身に移り,直線$m$上の点は原点に移るとする.

(1)行列$A$を求めよ.
(2)Pを座標平面上の点とする.点Pの$f$による像をQとする.

\mon[(i)] 点Qは直線$\ell$上の点であることを示せ.
\mon[(ii)] 点Pが直線$\ell$上の点でないとき,直線PQと直線$\ell$は垂直であることを示せ.
\mon[(iii)] 3点$(0,\ 0)$,$(1,\ 0)$,$(0,\ 2)$を頂点とする三角形の辺上を点Pが動くとき,点Qの動く範囲を求めよ.
京都府立大学 公立 京都府立大学 2011年 第1問
$\triangle \mathrm{ABC}$の$3$つの角$\angle \mathrm{A},\ \angle \mathrm{B},\ \angle \mathrm{C}$のそれぞれの大きさを$A,\ B,\ C$とする.以下の問いに答えよ.

(1)$\displaystyle \cos A+\cos B=2 \cos \frac{A+B}{2}\cos \frac{A-B}{2}$を余弦の加法定理から導け.
(2)$(1)$の結果を用いて$\displaystyle \cos A+\cos B \leqq 2\sin \frac{C}{2}$を示せ.また,等号が成り立つのはどのようなときか.
(3)$(2)$の結果を用いて$\cos A+\cos B+\cos C$が最大となるとき,$A,\ B,\ C$を求めよ.
名古屋市立大学 公立 名古屋市立大学 2011年 第3問
ベクトル$\overrightarrow{x_1}=(0,\ 1,\ 1)$,$\overrightarrow{x_2}=(1,\ 0,\ 1)$,$\overrightarrow{x_3}=(1,\ 1,\ 0)$について,次の問いに答えよ.

(1)$\displaystyle \overrightarrow{b_1}=\frac{\overrightarrow{x_1}}{|\overrightarrow{x_1}|}$とおくとき,$|\overrightarrow{x_2}-s \overrightarrow{b_1}|$を最小にする実数$s$の値とそのときのベクトル$\overrightarrow{y_2}=\overrightarrow{x_2}-s \overrightarrow{b_1}$を求めよ.
(2)$\displaystyle \overrightarrow{b_2}=\frac{\overrightarrow{y_2}}{|\overrightarrow{y_2}|}$とおくとき,$|\overrightarrow{x_3}-t \overrightarrow{b_1} - u \overrightarrow{b_2}|$を最小にする実数$t,\ u$の値とそのときのベクトル$\overrightarrow{y_3}=\overrightarrow{x_3}-t \overrightarrow{b_1}-u \overrightarrow{b_2}$を求めよ.
(3)$\displaystyle \overrightarrow{b_3}=\frac{\overrightarrow{y_3}}{|\overrightarrow{y_3}|}$とおくとき,$\overrightarrow{b_1},\ \overrightarrow{b_2},\ \overrightarrow{b_3}$は互いに直交することを示せ.
大阪府立大学 公立 大阪府立大学 2011年 第2問
四面体OABCと,Oと異なる点Gが与えられているとき,以下の問いに答えよ.

(1)等式$\text{AG}^2=\text{OG}^2-2\overrightarrow{\mathrm{OG}} \cdot \overrightarrow{\mathrm{OA}}+\text{OA}^2$を示せ.ただし,$\overrightarrow{\mathrm{OG}} \cdot \overrightarrow{\mathrm{OA}}$は$\overrightarrow{\mathrm{OG}}$と$\overrightarrow{\mathrm{OA}}$の内積を表す.
(2)$\overrightarrow{\mathrm{OG}}$が
\[ \overrightarrow{\mathrm{OG}}=a\overrightarrow{\mathrm{OA}}+b\overrightarrow{\mathrm{OB}}+c\overrightarrow{\mathrm{OC}} \]
と表されているとき,
\[ a\text{AG}^2+b\text{BG}^2+c\text{CG}^2=a\text{OA}^2+b\text{OB}^2+c\text{OC}^2 \]
が成り立つための実数$a,\ b,\ c$についての条件を求めよ.
スポンサーリンク

「証明」とは・・・

 まだこのタグの説明は執筆されていません。