タグ「証明」の検索結果

16ページ目:全1924問中151問~160問を表示)
愛媛大学 国立 愛媛大学 2016年 第4問
$f(x)=xe^{-x}$とし,関数$y=f(x)$のグラフを$C_1$とする.また,$C_1$を$x$軸方向に$\log a$だけ平行移動したグラフを$C_2$とする.ただし,$a$は$a>1$を満たす実数である.

(1)関数$y=f(x)$の増減,極値を調べ$C_1$の概形をかけ.なお,$\displaystyle \lim_{x \to \infty}xe^{-x}=0$であることを用いてよい.
(2)$C_1$と$C_2$の交点の$x$座標を求めよ.
(3)原点を$\mathrm{O}$とし,$C_2$と$x$軸の交点を$\mathrm{A}$とする.$C_1$,$C_2$および線分$\mathrm{OA}$で囲まれた部分の面積$S$を求めよ.
(4)$(3)$で求めた$S$に対して,$\displaystyle S<\frac{a-1}{a}$が成り立つことを示せ.
山梨大学 国立 山梨大学 2016年 第3問
$xy$平面上に$5$点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(1,\ 1)$,$\mathrm{B}(1,\ 0)$,$\displaystyle \mathrm{P} \left( \frac{1}{2},\ t \right)$ \ $\displaystyle \left( \frac{1}{2} \leqq t<1 \right)$,$\displaystyle \mathrm{Q}(\alpha,\ 0)$ \ $\displaystyle \left( \frac{1}{2} \leqq \alpha \leqq 1 \right)$がある.$\mathrm{A}$,$\mathrm{P}$を通る直線を$\ell$とする.

(1)$\ell$の方程式を求めよ.
(2)$\triangle \mathrm{APB}$において,$\angle \mathrm{APB} \leqq {90}^\circ$を示せ.
(3)$\ell$に垂直で$\mathrm{Q}$を通る直線を$m$とする.$\ell$と$m$の交点を$\mathrm{R}$とするとき,$\mathrm{R}$の$x$座標を$\alpha$と$t$を用いた式で表せ.
(4)$(3)$の$\mathrm{R}$が線分$\mathrm{PA}$上にあるための$\alpha$の範囲を$t$を用いた式で表せ.
山梨大学 国立 山梨大学 2016年 第2問
四面体$\mathrm{OABC}$において,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおき,$|\overrightarrow{a|}=2$,$|\overrightarrow{b|}=\sqrt{3}$,$|\overrightarrow{c|}=1$,$\overrightarrow{a} \cdot \overrightarrow{b}=2$,$\displaystyle \overrightarrow{b} \cdot \overrightarrow{c}=\frac{4}{3}$,$\displaystyle \overrightarrow{c} \cdot \overrightarrow{a}=\frac{4}{3}$を満たすとする.点$\mathrm{C}$から平面$\mathrm{OAB}$に垂線を下ろし,平面$\mathrm{OAB}$との交点を$\mathrm{H}$とする.

(1)ベクトル$\overrightarrow{\mathrm{OH}}$を,$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(2)四面体$\mathrm{OABC}$の体積$V$を求めよ.
(3)辺$\mathrm{BC}$の中点を$\mathrm{M}$とし,線分$\mathrm{AM}$を$4:1$に内分する点を$\mathrm{N}$とする.このとき,直線$\mathrm{CH}$と直線$\mathrm{ON}$が交わることを示せ.また,その$2$直線の交点を$\mathrm{P}$とするとき,$\mathrm{CP}:\mathrm{PH}$を求めよ.
愛媛大学 国立 愛媛大学 2016年 第2問
$\displaystyle f(x)=\frac{x}{2}$,$g(x)=x$,$\displaystyle h(x)=\frac{x+1}{2}$とおく.$x_0=1$とし,$2$枚の硬貨を繰り返して投げ,$n$回目の事象により$x_n$を次のように定める.
\[ x_n=\left\{ \begin{array}{lll}
f(x_{n-1}) & & (2 \text{枚とも表のとき}) \\
g(x_{n-1}) & & (\text{$1$枚が表,$1$枚が裏のとき}) \phantom{\frac{[ ]}{[ ]}} \\
h(x_{n-1}) & & (\text{$2$枚とも裏のとき})
\end{array} \right. \]
また,$p_n,\ q_n,\ r_n$をそれぞれ$\displaystyle 0<x_n \leqq \frac{1}{3}$である確率,$\displaystyle \frac{1}{3}<x_n \leqq \frac{2}{3}$である確率,$\displaystyle \frac{2}{3}<x_n \leqq 1$である確率とする.

(1)すべての自然数$n$に対して$0<x_n \leqq 1$を示せ.
(2)$p_1,\ q_1,\ r_1$を求めよ.
(3)$p_n,\ q_n,\ r_n$を$p_{n-1},\ q_{n-1},\ r_{n-1}$を用いて表せ.
(4)$p_n-r_n$を求めよ.
(5)$p_n$を求めよ.
旭川医科大学 国立 旭川医科大学 2016年 第1問
$\displaystyle I_n=\int_0^{\frac{\pi}{4}} \tan^n x \, dx (n=1,\ 2,\ 3,\ \cdots)$とおく.このとき,次の問いに答えよ.

(1)$\displaystyle \tan x \leqq x+1-\frac{\pi}{4} \left( 0 \leqq x \leqq \frac{\pi}{4} \right)$が成り立つことを示せ.
(2)$\displaystyle \lim_{n \to \infty} I_n$を求めよ.
(3)$I_n+I_{n+2}$の値を$n$を用いて表せ.
(4)$(3)$までの結果を用いて,無限級数$\displaystyle \sum_{n=1}^\infty \frac{{(-1)}^{n+1}}{2n}$の和を求めよ.
愛媛大学 国立 愛媛大学 2016年 第2問
放物線$C:y=x^2+2ax+b$について次の問いに答えよ.ただし,$a,\ b$は実数とする.

(1)放物線$C$上の点$(t,\ t^2+2at+b)$を通る接線の方程式を求めよ.
(2)平面上の点$\mathrm{P}(p,\ q)$から$C$に相異なる$2$本の接線$\ell_1,\ \ell_2$が引けるとする.

(i) $p,\ q$は$q<p^2+2ap+b$を満たすことを示せ.
(ii) $\ell_1$と$\ell_2$が直交するとき,$q$を$a$と$b$を用いて表せ.
愛媛大学 国立 愛媛大学 2016年 第2問
放物線$C:y=x^2+2ax+b$について次の問いに答えよ.ただし,$a,\ b$は実数とする.

(1)放物線$C$上の点$(t,\ t^2+2at+b)$を通る接線の方程式を求めよ.
(2)平面上の点$\mathrm{P}(p,\ q)$から$C$に相異なる$2$本の接線$\ell_1,\ \ell_2$が引けるとする.

(i) $p,\ q$は$q<p^2+2ap+b$を満たすことを示せ.
(ii) $\ell_1$と$\ell_2$が直交するとき,$q$を$a$と$b$を用いて表せ.
愛媛大学 国立 愛媛大学 2016年 第3問
$z_0$を虚数単位$i$と異なる複素数とする.複素数$z_n$を
\[ z_n=i+\frac{\sqrt{2}(z_{n-1}-i)(1+i)}{2} \quad (n=1,\ 2,\ 3,\ \cdots) \]
によって定める.

(1)すべての自然数$n$に対し$z_n \neq i$であることを示せ.
(2)$\displaystyle \frac{z_n-i}{z_{n-1}-i}$の絶対値$r$と偏角$\theta$を求めよ.ただし,$\theta$の範囲は$0 \leqq \theta<2\pi$とする.
(3)$z_m=z_0$となる最小の自然数$m$を求めよ.
(4)複素数平面上において$z_n$の表す点を$\mathrm{P}_n$とする.$(3)$で求めた$m$に対し$m$本の線分$\mathrm{P}_0 \mathrm{P}_1$,$\mathrm{P}_1 \mathrm{P}_2$,$\cdots$,$\mathrm{P}_{m-1} \mathrm{P}_m$で囲まれる図形の面積を$S$とする.$z_0=1-i$のとき$S$の値を求めよ.
愛媛大学 国立 愛媛大学 2016年 第3問
$\displaystyle f(x)=\frac{x}{2}$,$g(x)=x$,$\displaystyle h(x)=\frac{x+1}{2}$とおく.$x_0=1$とし,$2$枚の硬貨を繰り返して投げ,$n$回目の事象により$x_n$を次のように定める.
\[ x_n=\left\{ \begin{array}{lll}
f(x_{n-1}) & & (2 \text{枚とも表のとき}) \\
g(x_{n-1}) & & (\text{$1$枚が表,$1$枚が裏のとき}) \phantom{\frac{[ ]}{[ ]}} \\
h(x_{n-1}) & & (\text{$2$枚とも裏のとき})
\end{array} \right. \]
また,$p_n,\ q_n,\ r_n$をそれぞれ$\displaystyle 0<x_n \leqq \frac{1}{3}$である確率,$\displaystyle \frac{1}{3}<x_n \leqq \frac{2}{3}$である確率,$\displaystyle \frac{2}{3}<x_n \leqq 1$である確率とする.

(1)すべての自然数$n$に対して$0<x_n \leqq 1$を示せ.
(2)$p_1,\ q_1,\ r_1$を求めよ.
(3)$p_n,\ q_n,\ r_n$を$p_{n-1},\ q_{n-1},\ r_{n-1}$を用いて表せ.
(4)$p_n-r_n$を求めよ.
(5)$p_n$を求めよ.
愛媛大学 国立 愛媛大学 2016年 第4問
$z_0$を虚数単位$i$と異なる複素数とする.複素数$z_n$を
\[ z_n=i+\frac{\sqrt{2}(z_{n-1}-i)(1+i)}{2} \quad (n=1,\ 2,\ 3,\ \cdots) \]
によって定める.

(1)すべての自然数$n$に対し$z_n \neq i$であることを示せ.
(2)$\displaystyle \frac{z_n-i}{z_{n-1}-i}$の絶対値$r$と偏角$\theta$を求めよ.ただし,$\theta$の範囲は$0 \leqq \theta<2\pi$とする.
(3)$z_m=z_0$となる最小の自然数$m$を求めよ.
(4)複素数平面上において$z_n$の表す点を$\mathrm{P}_n$とする.$(3)$で求めた$m$に対し$m$本の線分$\mathrm{P}_0 \mathrm{P}_1$,$\mathrm{P}_1 \mathrm{P}_2$,$\cdots$,$\mathrm{P}_{m-1} \mathrm{P}_m$で囲まれる図形の面積を$S$とする.$z_0=1-i$のとき$S$の値を求めよ.
スポンサーリンク

「証明」とは・・・

 まだこのタグの説明は執筆されていません。