タグ「証明」の検索結果

148ページ目:全1924問中1471問~1480問を表示)
三重大学 国立 三重大学 2011年 第1問
次のふたつの方程式を考える.
\begin{eqnarray}
& & x^2+y^2=z^2 \qquad \cdots\cdots ① \nonumber \\
& & s^2+t^2=u^2+1 \cdots\cdots ② \nonumber
\end{eqnarray}

(1)実数$a,\ b$に対し実数$a^{*},\ b^{*}$を$a^{*}=a+b,\ b^{*}=2a+b+1$で定める.$(x,\ y,\ z)=(a,\ a+1,\ b)$が$①$の解ならば$(s,\ t,\ u)=(a^{*},\ a^{*}+1,\ b^{*})$は$②$の解であることを示せ.また,逆に$(s,\ t,\ u)=(a,\ a+1,\ b)$が$②$の解ならば$(x,\ y,\ z)=(a^{*},\ a^{*}+1,\ b^{*})$は$①$の解であることを示せ.
(2)方程式$①$の自然数解$(x,\ y,\ z)$をピタゴラス数という.$y=x+1$を満たすピタゴラス数を3組あげよ.
岩手大学 国立 岩手大学 2011年 第3問
次の文章について,後の問いに答えよ.\\ \\
\quad 地球温暖化問題に関して,二酸化炭素の排出量の削減が叫ばれている.2008年に日本で開かれたサミットでは,42年後の2050年までに,年当たりの排出量を2008年のときと比較して50$\%$以上削減する,という目標が提言された.この目標を達成するために,前年比同率で削減することを考える.\\
\quad 2008年における排出量を$a \ (a>0)$とし,毎年,前年の$d \times 100 \% \ (0<d<1)$を減らすこととする.2008年の1年後の2009年の排出量の目標は[\bf ア]である.2008年から$n$年後の年間排出量を$a_n$とおくと,$a_n=[イ]$である.目標を達成するには$\displaystyle a_{42} \leqq \frac{a}{2}$,つまり,$d$を用いた式で表せば,
\[ [ウ] \leqq \frac{1}{2} \]
が成り立てばよい.両辺の逆数をとれば$\displaystyle \frac{1}{[ウ]} \geqq 2$となる.ところで,不等式
\[ (1+d)^{42} < \frac{1}{[ウ]} \ \, \cdots\cdots \maru{1} \]
が成り立つことがわかる.従って,
\[ (1+d)^{42} \geqq 2 \qquad\qquad \cdots\cdots \maru{2} \]
を満たす$d$を見つければ目標を達成することは明らかである.不等式\maru{2}の左辺は,二項定理により
\[ (1+d)^{42} =\sum_{r=0}^{42} [エ] \]
と表される.これを用いると,\underline{$d=0.02$は不等式\maru{2}を満たす}ことがわかる.つまり,毎年$2\%$の削減を2009年から行ったとすれば,42年後の2050年の排出量は2008年の$50\%$未満となることがわかった.

(1)文章中の[ア]~[エ]に当てはまる式を答えよ.
(2)$0<d<1$とするとき,不等式\maru{1}を証明せよ.
(3)下線部の命題を証明せよ.
(4)毎年$2\%$の削減を行った場合でも,42年間の排出量の合計は,削減率を0のまま2008年と同じ排出量を同じ期間続けたときの排出量の合計の$\displaystyle \frac{7}{12}$倍より大きくなることを証明せよ.
奈良女子大学 国立 奈良女子大学 2011年 第2問
さいころを$n$回投げたとき1の目が出る回数が奇数である確率を$p_n$とおく.以下の問いに答えよ.

(1)$p_1,\ p_2,\ p_3$を求めよ.
(2)$\displaystyle p_{n+1}=\frac{2}{3}p_n+\frac{1}{6}$が成り立つことを示せ.
(3)$p_n$を求めよ.
島根大学 国立 島根大学 2011年 第2問
$a$を実数とする.$2$次方程式$x^2+2ax+(a-1)=0$の解を$\alpha,\ \beta$とする.このとき,次の問いに答えよ.

(1)$\alpha$と$\beta$は異なる実数であることを示せ.
(2)$\alpha$と$\beta$のうち,少なくとも$1$つは負であることを示せ.
(3)$\alpha \leqq 0,\ \beta \leqq 0$であるとき,$\alpha^2+\beta^2$の最小値を求めよ.
島根大学 国立 島根大学 2011年 第3問
$2$つの放物線$C_0:y=-x^2$と$C_1:y=(x-1)^2$について,次の問いに答えよ.

(1)$C_0$上の点$(a,\ -a^2)$における接線の方程式を求めよ.
(2)$C_1$上に点$\mathrm{P}(p,\ (p-1)^2)$を任意にとるとき,点$\mathrm{P}$を通り$C_0$に接する直線は$2$本あることを示せ.
(3)(2)の$2$本の直線が$C_0$と接する点を$\mathrm{A}$,$\mathrm{B}$とし,$2$直線$\mathrm{AP}$,$\mathrm{BP}$及び放物線$C_0$で囲まれた部分の面積を$S$とするとき,$S^2$が最小となる$p$の値と,そのときの$S^2$の値を求めよ.
島根大学 国立 島根大学 2011年 第1問
$m$を自然数とする.$2^m!$が$2^n$で割り切れる自然数$n$の最大値を$N(m)$とおくとき,次の問いに答えよ.

(1)$N(5)$を求めよ.
(2)$N(m)$を$m$の式で表せ.
(3)$N(m)$が素数ならば,$m$も素数であることを証明せよ.
島根大学 国立 島根大学 2011年 第3問
$U=\{k \; | \; k\text{は自然数,}\ 1 \leqq k \leqq 25 \}$を全体集合とし,$U$の部分集合$A,\ B$を次のように定める.
\[ A=\{k \; | \; k \in U \text{かつ} k \text{は3の倍数} \},\quad B=\{k \; | \; k \in U \text{かつ} k \text{は4の倍数} \} \]
このとき,次の問いに答えよ.

(1)2つの集合$A \cap B,\ A \cup B$を,要素を書き並べる方法で表せ.
(2)$m$と$n$を自然数とし,2次方程式
\[ (*) \quad x^2-mx+n=0 \]
が整数解をもつとする.このとき,$n$が素数ならば,2次方程式$(*)$は1を解としてもつことを証明せよ.
(3)$m,\ n$を集合$\overline{A} \cap \overline{B}$の要素とする.このとき,2次方程式$(*)$の解がすべて2以上の整数となる$m$と$n$の組$(m,\ n)$をすべて求めよ.ただし,$\overline{A}$と$\overline{B}$は,それぞれ$A$と$B$の補集合を表す.
徳島大学 国立 徳島大学 2011年 第3問
曲線$C$を$y^2-4y-8x+20=0$とする.

(1)曲線$y^2=8x$を$x$軸方向に$a$,$y$軸方向に$b$だけ平行移動して曲線$C$が得られるように,$a,\ b$の値を定めよ.
(2)点$(0,\ t)$を通り,傾きが$\displaystyle \frac{1}{m}$の直線を$\ell$とする.直線$\ell$と曲線$C$が接するとき,$m$の満たす2次方程式を求めよ.
(3)点$(0,\ t)$から曲線$C$に引いた2本の接線は,$t$の値によらず垂直であることを示せ.
奈良女子大学 国立 奈良女子大学 2011年 第6問
直線$\ell:y=x$上を動く点Pと,Pで$\ell$と接する円$C_1$を考える.Pの座標を$(t,\ t)$,$C_1$の中心の座標を$(a,\ b)$とする.ただし$t>0,\ a>b$とする.以下の問いに答えよ.

(1)以下の(i),(ii)に答えよ.

\mon[(i)] $a+b$を$t$を用いて表せ.
\mon[(ii)] $C_1$の半径を$a,\ b$を用いて表せ.

(2)中心が$(1,\ -1)$の円$C_2$も$\ell$と接しているとする.$C_1$が,さらに$C_2$に接しているとする.以下の(i),(ii)に答えよ.

\mon[(i)] $(a+b)^2=8(a-b)$を示せ.
\mon[(ii)] $b$の最大値を求めよ.
香川大学 国立 香川大学 2011年 第3問
$t$がすべての実数をとるとき,3点A$(t,\ t^2)$,B$(t,\ t-2)$,C$(t+\sqrt{3},\ t^2-t-1)$について,次の問に答えよ.

(1)各実数$t$に対して,AとBは異なる点であることを示せ.
(2)$\triangle$ABCが直角三角形になる$t$をすべて求めよ.
(3)$\triangle$ABCが鋭角三角形になる$t$の範囲を求めよ.
スポンサーリンク

「証明」とは・・・

 まだこのタグの説明は執筆されていません。