タグ「言葉」の検索結果

1ページ目:全2問中1問~10問を表示)
獨協医科大学 私立 獨協医科大学 2016年 第4問
次の問いに答えなさい.ただし,$[チ]$には$[$\mathrm{X]$}$~$[$\mathrm{Z]$}$に入る言葉の組合せとして最も適切なものを,下の選択肢$\nagamaruichi$~$\nagamaruroku$のうちから一つ選びなさい.

複素数$\alpha$を$\alpha=-7+4 \sqrt{3}i$とし,実数の数列$\{a_n\}$と$\{b_n\}$を
\[ a_n+4 \sqrt{3} b_n i=\alpha^n \quad (n=1,\ 2,\ 3,\ \cdots) \]
で定める.ただし,$i$は虚数単位である.$a_n$と$b_n$を$\alpha$とその共役な複素数$\overline{\alpha}$で表すと
\[ a_n=\frac{\alpha^n+(\overline{\alpha})^n}{[ア]},\quad b_n=\frac{\alpha^n-(\overline{\alpha})^n}{[イ] \sqrt{[ウ]}i} \]
となるので,数列$\{a_n\}$と$\{b_n\}$は漸化式

$a_{n+2}+[エオ]a_{n+1}+[カキ]a_n=0 \quad \cdots\cdots \ ①$
$b_{n+2}+[エオ]b_{n+1}+[カキ]b_n=0 \quad\;\;\!\! \cdots\cdots \ ②$

を満たす.これらを用いて,すべての自然数$n$に対して

$a_n$と$b_n$が互いに素な整数である $\quad \cdots\cdots \ (*)$

ことを,数学的帰納法により証明する.

(i) $n=1,\ 2$のとき
\[ a_1=[クケ],\quad b_1=[コ],\quad a_2=[サ],\quad b_2=[シスセ] \]
であるから,$(*)$が成り立つ.
(ii) $n=k,\ k+1$のとき$(*)$が成り立つと仮定する.
まず$①,\ ②$より,$a_{k+2},\ b_{k+2}$は$[$\mathrm{X]$}$である.ここで
\[ {a_n}^2+48{b_n}^2=[ソタ]^n \quad \cdots\cdots \ ③ \]
がすべての自然数$n$で成り立つ.$[ソタ]$が$[$\mathrm{Y]$}$であるから,$a_{k+2},\ b_{k+2}$が$[$\mathrm{Z]$}$と仮定すると$③$より,これら$2$数は$[ソタ]$の倍数でなければならない.ところが,このとき$①,\ ②$より$a_{k+1},\ b_{k+1}$は$[ソタ]$の倍数となり,数学的帰納法の仮定と矛盾する.よって,$n=k+2$のときも$(*)$が成り立つ.

$(ⅰ),\ (ⅱ)$より,すべての自然数$n$について$(*)$が成り立つ.

$[チ]$の選択肢
\[ \begin{array}{ccccccccc}
& \mathrm{X} & \mathrm{Y} & \mathrm{Z} & & & \mathrm{X} & \mathrm{Y} & \mathrm{Z} \\
\nagamaruichi & \text{整数} & \text{素数} & \text{互いに素でない} & & \nagamaruni & \text{整数} & \text{素数} & \text{互いに素である} \\
\nagamarusan & \text{素数} & \text{素数} & \text{互いに素でない} & & \nagamarushi & \text{整数} & \text{整数} & \text{互いに素である} \\
\nagamarugo & \text{素数} & \text{整数} & \text{互いに素でない} & & \nagamaruroku & \text{素数} & \text{整数} & \text{互いに素である}
\end{array} \]
西南学院大学 私立 西南学院大学 2014年 第1問
$(1)$~$(5)$の空欄にあてはまる言葉を,次の$1$~$4$から選べ.

\mon[$1$] 必要条件であるが,十分条件ではない.
\mon[$2$] 十分条件であるが,必要条件ではない.
\mon[$3$] 必要十分条件である.
\mon[$4$] 必要条件でも十分条件でもない.


(1)$\triangle \mathrm{ABC}$と$\triangle \mathrm{PQR}$の面積が等しいことは,$\triangle \mathrm{ABC}$と$\triangle \mathrm{PQR}$が相似であるための$[ア]$
(2)整数$a,\ b$がともに奇数であることは,$ab$が奇数であるための$[イ]$
(3)$A \cap B \neq \phi$である集合$A,\ B$について,$x \in \overline{\overline{A} \cap \overline{B}}$であることは,$x \in A \cap B$であるための$[ウ]$
(4)$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}>0$であることは,$\triangle \mathrm{ABC}$が鋭角三角形であるための$[エ]$
(5)$|x|+|y| \leqq 1$は,$|x+y| \leqq 1$であるための$[オ]$
スポンサーリンク

「言葉」とは・・・

 まだこのタグの説明は執筆されていません。