タグ「角度」の検索結果

60ページ目:全901問中591問~600問を表示)
明治大学 私立 明治大学 2012年 第3問
$xy$平面上に点$\mathrm{P}(1,\ 0)$を中心とする円:$(x-1)^2+y^2=1$がある.この円周上に$4$点$\displaystyle \mathrm{A}(\frac{9}{5},\ \frac{3}{5})$,$\displaystyle \mathrm{B}(\frac{1}{13},\ \frac{5}{13})$,$\mathrm{C}(\alpha,\ \beta)$,$\mathrm{D}(\gamma,\ \delta)$がある.ただし,$\displaystyle \delta<-\frac{4}{5}$とする.$\angle \mathrm{ABC}=90^{\circ}$であり,三角形$\mathrm{ACD}$の面積は$\displaystyle \frac{63}{65}$であるとする.

(1)点$\mathrm{C}$の座標は,$\displaystyle\left( \frac{[ツ]}{[テ]},\ -\displaystyle\frac{[ト]}{[テ]} \right)$である.

(2)$\mathrm{AB}$の長さは$\displaystyle \frac{[ナニ] \sqrt{[ヌネ]}}{[ヌネ]}$であり,$\displaystyle \cos \angle \mathrm{BDC}=\frac{[ノ] \sqrt{[ハヒ]}}{[ハヒ]}$である.

(3)点$\mathrm{D}$の座標は$\displaystyle \left( \frac{[フヘ]}{[ホマ]},\ -\frac{[ミム]}{[メモ]} \right)$であり,$\displaystyle \cos \angle \mathrm{BPD}=-\frac{[ヤユヨ]}{169}$である.
立教大学 私立 立教大学 2012年 第3問
座標平面上に2点A$(-1,\ 3)$,B$(5,\ 15)$と直線$\ell$が与えられており,2点A,Bは直線$\ell$に関して対称な位置にある.直線$\ell$が$y$軸と交わる点をCとし,線分ABの中点をMとする.線分MA上に,点Mと異なる点Pをとる.このとき次の問(1)~(4)に答えよ.

(1)点Mの座標と直線ABの方程式を求めよ.
(2)直線$\ell$の方程式を求めよ.
(3)点Pの$x$座標を$t$とする.$\angle \text{PCM}=\theta$とおくとき,$\cos \theta$を$t$を用いて表せ.
(4)直線$\ell$に関して,点Pと対称な点をQとする.三角形PCQが正三角形となるとき,$t$の値を求めよ.
立教大学 私立 立教大学 2012年 第3問
座標平面上に円$x^2+y^2=4$と円上の点$\mathrm{P}(1,\ -\sqrt{3})$,$\mathrm{Q}(-1,\ -\sqrt{3})$が与えられている.$0<\theta<\pi$のとき,円上の点を$\mathrm{R}(2\cos \theta,\ 2\sin \theta)$とし,$\angle \mathrm{QPR}=\alpha,\ \angle \mathrm{PQR}=\beta$とする.このとき,次の問(1)~(3)に答えよ.

(1)点$(2,\ 0)$を$\mathrm{A}$,点$(-2,\ 0)$を$\mathrm{B}$とするとき,弧$\mathrm{PAR}$に対する中心角と弧$\mathrm{QBR}$に対する中心角を$\theta$を用いて表せ.
(2)$\alpha,\ \beta$を$\theta$を用いて表せ.
(3)$2 \sin \alpha=\sqrt{3} \sin \beta$となるときの点$\mathrm{R}$の座標を求めよ.
立教大学 私立 立教大学 2012年 第2問
正の数$a$に対して,空間内の$3$点$\displaystyle \mathrm{A} \left( \frac{1}{\sqrt{a}},\ 0,\ 0 \right)$,$\mathrm{B} (0,\ \sqrt{a},\ 0)$,$\mathrm{C} (0,\ 0,\ \sqrt{a})$を頂点とする三角形$\mathrm{ABC}$が与えられている.このとき,次の問いに答えよ.

(1)三角形$\mathrm{ABC}$の$3$辺の長さ$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CA}$を$a$で表せ.
(2)$\angle \mathrm{BAC}$を$\theta$とおく.$\cos \theta$を$a$で表せ.
(3)三角形$\mathrm{ABC}$の面積$S$を$a$で表せ.
(4)$\displaystyle \frac{S}{\mathrm{BC}}$が最小値をとるときの$a$の値とその最小値を求めよ.
立教大学 私立 立教大学 2012年 第1問
次の空欄ア~ケに当てはまる数または式を記入せよ.

(1)$\sqrt{2} \div \sqrt[4]{4} \times \sqrt[12]{32} \div \sqrt[6]{2}=2^a$とすると$a=[ア]$である.
(2)座標空間に$4$点$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{A}(3,\ 2,\ 1)$,$\mathrm{B}(1,\ 3,\ 5)$,$\mathrm{C}(x,\ y,\ z)$がある.ベクトル$\overrightarrow{\mathrm{OC}}$は,ベクトル$\overrightarrow{\mathrm{OA}}$およびベクトル$\overrightarrow{\mathrm{OB}}$と垂直である.このとき,$(x,\ y,\ z)=[イ]$である.ただし,$x>0$,$|\overrightarrow{\mathrm{OC}}|=1$とする.
(3)$i$を虚数単位として,複素数$x=\sqrt{3}+\sqrt{7}i$を考える.$x$と共役な複素数を$\overline{x}$とするとき,$x^3+\overline{x}^3$の値は$[ウ]$である.
(4)$\log_2x+\log_4y=1$のとき,$x^2+y$の最小値は$[エ]$である.
(5)$4$つの数字$0,\ 1,\ 2,\ 6$から,$18$で割り切れる$4$桁の数を作るとすると$[オ]$通りできる.ただし,同じ数字は$2$度以上使わないものとする.
(6)$\cos 75^\circ$の値は$[カ]$である.
(7)$\displaystyle \left( x^3-\frac{1}{2} \right)^{10}$の展開式における$x^{15}$の係数は$[キ]$である.
(8)三角形$\mathrm{ABC}$の外心を$\mathrm{O}$とする.$\angle \mathrm{OAC}=40^\circ$,$\angle \mathrm{OCB}=25^\circ$のとき,$\angle \mathrm{AOC}=[ク]$であり,$\angle \mathrm{ABO}=[ケ]$である.
自治医科大学 私立 自治医科大学 2012年 第15問
辺$\mathrm{BC}$,$\mathrm{CA}$,$\mathrm{AB}$のそれぞれの長さが,$6$,$5$,$7$となる三角形$\mathrm{ABC}$について考える.$\angle \mathrm{A}$の二等分線と辺$\mathrm{BC}$の交点を$\mathrm{D}$とし,線分$\mathrm{AD}$の長さを$L$とするとき,$\displaystyle \frac{12L}{\sqrt{105}}$の値を求めよ.
北海学園大学 私立 北海学園大学 2012年 第1問
次の問いに答えよ.

(1)$x$の$2$次方程式$ax^2+bx+2=0$の$2$つの解が$3$と$6$であるような定数$a$と$b$の値をそれぞれ求めよ.
(2)$x$の$2$次関数$y=-x^2+2ax-4a+1$の最大値が$0$以下となるような定数$a$の値の範囲を求めよ.
(3)三角形$\mathrm{ABC}$において,$\angle \mathrm{A}$,$\angle \mathrm{B}$,$\angle \mathrm{C}$の大きさをそれぞれ$A$,$B$,$C$で表す.$B=30^\circ$,$\displaystyle \sin^2 A+\sin^2 B=\frac{1}{2}$であり,この三角形の外接円の半径が$\displaystyle \frac{1}{2}$のとき,$A$と$C$を求めよ.またこのとき,辺$\mathrm{AB}$の長さを求めよ.
北海学園大学 私立 北海学園大学 2012年 第3問
$\mathrm{AB}=x$,$\mathrm{BC}=6$,$\mathrm{CA}=x+2$である三角形$\mathrm{ABC}$の辺$\mathrm{BC}$を$1:2$に内分する点を$\mathrm{D}$とし,$\mathrm{AD}=y$とする.三角形$\mathrm{ABD}$と三角形$\mathrm{ADC}$の内接円の半径をそれぞれ$r_1,\ r_2$とするとき,$\displaystyle \frac{r_2}{r_1}=\frac{3}{2}$を満たしている.ただし,$x$と$y$は定数とし,$x>0$,$y>0$とする.

(1)$x,\ y,\ \cos \angle \mathrm{ADB},\ \cos \angle \mathrm{ADC}$の値をそれぞれ求めよ.
(2)三角形$\mathrm{ABD}$と三角形$\mathrm{ADC}$の面積をそれぞれ求めよ.
(3)三角形$\mathrm{ABD}$と三角形$\mathrm{ADC}$の外接円の半径をそれぞれ$R_1,\ R_2$とするとき,$R_1$と$R_2$の値をそれぞれ求めよ.
東北学院大学 私立 東北学院大学 2012年 第1問
角$\mathrm{C}$を直角とする直角三角形$\mathrm{ABC}$がある.辺$\mathrm{AB}$上に$\mathrm{D}$,$\mathrm{H}$を次のようにとる.$\angle \mathrm{CHB}=90^\circ$とし,$\mathrm{D}$を$\mathrm{H}$に関し,$\mathrm{B}$と反対側に$\mathrm{DH}=2$とする.また,$\mathrm{AD}=2 \mathrm{CD}$とし,$\angle \mathrm{CDH}=60^\circ$とする.このとき,次の問いに答えよ.

(1)辺$\mathrm{CD}$の長さを求めよ.
(2)$\triangle \mathrm{BCD}$の面積を求めよ.
(3)$\sin A$の値を求めよ.
(4)$\triangle \mathrm{ADC}$の外接円の半径$R$を求めよ.
甲南大学 私立 甲南大学 2012年 第2問
座標平面上に点$\mathrm{A}(0,\ 2)$,点$\mathrm{B}(0,\ b)$,点$\mathrm{C}(c,\ 0)$がある.ただし,$b>2$,$c>2$とする.また,原点を$\mathrm{O}$とし,$\angle \mathrm{OCA}=\alpha$,$\angle \mathrm{OCB}=\beta$,$\angle \mathrm{ACB}=\theta$とする.このとき,以下の問いに答えよ.

(1)$\tan \alpha$を$c$で表せ.また,$\tan \beta$を$b,\ c$で表せ.
(2)$\tan \theta$を$b,\ c$で表せ.
(3)$\displaystyle \theta=\frac{\pi}{4}$のとき,$b$を$c$で表せ.
(4)$\displaystyle \theta=\frac{\pi}{4}$のとき,$b$と$c$がともに整数となるような$(b,\ c)$の組をすべて求めよ.
スポンサーリンク

「角度」とは・・・

 まだこのタグの説明は執筆されていません。