タグ「角度」の検索結果

5ページ目:全901問中41問~50問を表示)
大分大学 国立 大分大学 2016年 第3問
中心が原点$\mathrm{O}$で半径が$a$の定円$C_1$上を,半径$\displaystyle \frac{a}{4}$の円$C_2$が内接しながらすべることなく回転する.円$C_2$上の点$\mathrm{P}$は最初に点$\mathrm{A}(a,\ 0)$にあるとする.円$C_2$の中心を$\mathrm{B}$とするとき,以下の問いに答えなさい.

(1)$\angle \mathrm{AOB}=\theta$とする.$\overrightarrow{\mathrm{BP}}$を$a,\ \theta$で表しなさい.
(2)$\overrightarrow{\mathrm{OP}}$を$a,\ \theta$で表しなさい.
(3)$0 \leqq \theta \leqq 2\pi$のとき,動点$\mathrm{P}$が移動する距離を求めなさい.
鹿児島大学 国立 鹿児島大学 2016年 第1問
次の各問いに答えよ.

(1)$\triangle \mathrm{ABC}$において$\angle \mathrm{A}$の二等分線と辺$\mathrm{BC}$との交点を$\mathrm{D}$とする.$\mathrm{AB}=6$,$\mathrm{BC}=5$,$\mathrm{BD}=3$のとき,辺$\mathrm{AC}$の長さを求めよ.
(2)自然数$n$が$6$と互いに素であるとき,$n^2-1$が$6$で割り切れることを示せ.
(3)$xy$平面で次の不等式で表される領域を図示せよ.
\[ |x| \leqq y \leqq 1-|x| \]
鹿児島大学 国立 鹿児島大学 2016年 第1問
次の各問いに答えよ.

(1)$\triangle \mathrm{ABC}$において$\angle \mathrm{A}$の二等分線と辺$\mathrm{BC}$との交点を$\mathrm{D}$とする.$\mathrm{AB}=6$,$\mathrm{BC}=5$,$\mathrm{BD}=3$のとき,辺$\mathrm{AC}$の長さを求めよ.
(2)自然数$n$が$6$と互いに素であるとき,$n^2-1$が$6$で割り切れることを示せ.
(3)$xy$平面で次の不等式で表される領域を図示せよ.
\[ |x| \leqq y \leqq 1-|x| \]
長崎大学 国立 長崎大学 2016年 第1問
以下の問いに答えよ.

(1)放物線$y=x^2-x$の頂点を$\mathrm{P}$とする.点$\mathrm{Q}$はこの放物線上の点であり,原点$\mathrm{O}(0,\ 0)$とも点$\mathrm{P}$とも異なるとする.$\angle \mathrm{OPQ}$が直角であるとき,点$\mathrm{Q}$の座標を求めよ.
(2)関数$f(x)$は以下の条件(イ),(ロ),(ハ)を満たす.そのような正の数$a$の値と$f(x)$を求めよ.

(イ)$f^\prime(x)=x^2+ax$
(ロ)$f(0)=-1$
(ハ)$f(x)$の極大値と極小値の差が$\displaystyle \frac{4}{81}$

(3)方程式$2(\log_2 x)^2-7 |\log_2 x|-4=0$を解け.
(4)$0 \leqq x \leqq 2\pi$のとき,不等式$\sin 3x+\sin 2x<\sin x$を解け.
秋田大学 国立 秋田大学 2016年 第3問
原点を$\mathrm{O}$とする座標平面上に$2$点$\mathrm{A}(1,\ 0)$,$\mathrm{B}(0,\ 1)$をとり,$\mathrm{O}$を中心とする半径$1$の円の第$1$象限にある部分を$C$とする.$3$点$\mathrm{P}(x_1,\ y_1)$,$\mathrm{Q}(x_2,\ y_2)$,$\mathrm{R}$は$C$の周上にあり,$2y_1=y_2$および$\angle \mathrm{AOP}=4 \angle \mathrm{AOR}$を満たすものとする.直線$\mathrm{OQ}$と直線$y=1$の交点を$\mathrm{Q}^\prime$,直線$\mathrm{OR}$と直線$y=1$の交点を$\mathrm{R}^\prime$とする.$\angle \mathrm{AOP}=\theta$とするとき,次の問いに答えよ.

(1)点$\mathrm{Q}$の座標を$\theta$を用いて表せ.
(2)点$\mathrm{Q}^\prime$と点$\mathrm{R}^\prime$の座標を$\theta$を用いて表せ.
(3)点$\mathrm{P}$が点$\mathrm{A}$に限りなく近づくとき,$\displaystyle \frac{\mathrm{BR}^\prime}{\mathrm{BQ}^\prime}$の極限を求めよ.ただし,$\displaystyle \lim_{x \to 0} \frac{\sin x}{x}=1$であることは用いてよい.
奈良女子大学 国立 奈良女子大学 2016年 第1問
三角形$\mathrm{ABC}$において,辺$\mathrm{AB}$を$2:3$に内分する点を$\mathrm{P}$,辺$\mathrm{AC}$を$1:2$に内分する点を$\mathrm{Q}$とする.正の数$m$に対して,線分$\mathrm{PC}$を$m:1$に内分する点を$\mathrm{R}$とする.$\overrightarrow{\mathrm{AB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{AC}}=\overrightarrow{c}$とおく.次の問いに答えよ.

(1)$\overrightarrow{\mathrm{AP}}$と$\overrightarrow{\mathrm{AQ}}$を$\overrightarrow{b}$と$\overrightarrow{c}$を用いて表せ.
(2)$\overrightarrow{\mathrm{QR}}$を$\overrightarrow{b},\ \overrightarrow{c},\ m$を用いて表せ.
(3)$|\overrightarrow{b|}=3$,$|\overrightarrow{c|}=2$,$\angle \mathrm{BAC}={60}^\circ$であり,$\overrightarrow{\mathrm{QR}}$と$\overrightarrow{\mathrm{BC}}$は垂直であるとき,$m$の値を求めよ.
島根大学 国立 島根大学 2016年 第3問
複素数平面上に点$\mathrm{O}(0)$,$\mathrm{P}(-1+\sqrt{3}i)$,$\mathrm{Q}(2)$と,これら$3$点を通る円$C$がある.ただし,$i$は虚数単位とする.このとき,次の問いに答えよ.

(1)複素数$-1+\sqrt{3}i$を極形式で表せ.ただし,偏角$\theta$の範囲は$0 \leqq \theta<2\pi$とする.
(2)$\angle \mathrm{OPQ}$の大きさを求めよ.
(3)円$C$と虚軸との交点のうち,$\mathrm{O}$でない点を$\mathrm{R}$とする.$\mathrm{R}$を表す複素数を求めよ.
(4)円$C$の中心を表す複素数を$c$とする.点$z$が円$C$上を動くとき,複素数$\displaystyle w=\frac{z-1}{z-c}$がえがく図形を図示せよ.
秋田大学 国立 秋田大学 2016年 第3問
原点を$\mathrm{O}$とする座標平面上に$2$点$\mathrm{A}(1,\ 0)$,$\mathrm{B}(0,\ 1)$をとり,$\mathrm{O}$を中心とする半径$1$の円の第$1$象限にある部分を$C$とする.$3$点$\mathrm{P}(x_1,\ y_1)$,$\mathrm{Q}(x_2,\ y_2)$,$\mathrm{R}$は$C$の周上にあり,$2y_1=y_2$および$\angle \mathrm{AOP}=4 \angle \mathrm{AOR}$を満たすものとする.直線$\mathrm{OQ}$と直線$y=1$の交点を$\mathrm{Q}^\prime$,直線$\mathrm{OR}$と直線$y=1$の交点を$\mathrm{R}^\prime$とする.$\angle \mathrm{AOP}=\theta$とするとき,次の問いに答えよ.

(1)点$\mathrm{Q}$の座標を$\theta$を用いて表せ.
(2)点$\mathrm{Q}^\prime$と点$\mathrm{R}^\prime$の座標を$\theta$を用いて表せ.
(3)点$\mathrm{P}$が点$\mathrm{A}$に限りなく近づくとき,$\displaystyle \frac{\mathrm{BR}^\prime}{\mathrm{BQ}^\prime}$の極限を求めよ.ただし,$\displaystyle \lim_{x \to 0} \frac{\sin x}{x}=1$であることは用いてよい.
秋田大学 国立 秋田大学 2016年 第3問
原点を$\mathrm{O}$とする座標平面上に$2$点$\mathrm{A}(1,\ 0)$,$\mathrm{B}(0,\ 1)$をとり,$\mathrm{O}$を中心とする半径$1$の円の第$1$象限にある部分を$C$とする.$3$点$\mathrm{P}(x_1,\ y_1)$,$\mathrm{Q}(x_2,\ y_2)$,$\mathrm{R}$は$C$の周上にあり,$2y_1=y_2$および$\angle \mathrm{AOP}=4 \angle \mathrm{AOR}$を満たすものとする.直線$\mathrm{OQ}$と直線$y=1$の交点を$\mathrm{Q}^\prime$,直線$\mathrm{OR}$と直線$y=1$の交点を$\mathrm{R}^\prime$とする.$\angle \mathrm{AOP}=\theta$とするとき,次の問いに答えよ.

(1)点$\mathrm{Q}$の座標を$\theta$を用いて表せ.
(2)点$\mathrm{Q}^\prime$と点$\mathrm{R}^\prime$の座標を$\theta$を用いて表せ.
(3)点$\mathrm{P}$が点$\mathrm{A}$に限りなく近づくとき,$\displaystyle \frac{\mathrm{BR}^\prime}{\mathrm{BQ}^\prime}$の極限を求めよ.ただし,$\displaystyle \lim_{x \to 0} \frac{\sin x}{x}=1$であることは用いてよい.
山口大学 国立 山口大学 2016年 第4問
点$\mathrm{O}(0,\ 0,\ 0)$と点$\mathrm{A}(1,\ 0,\ 0)$に対して,点$\mathrm{B}(b_1,\ b_2,\ 0)$と点$\mathrm{C}(c_1,\ c_2,\ c_3)$は
\[ \angle \mathrm{AOB}=\angle \mathrm{BOC}=\angle \mathrm{COA}=\frac{3\pi}{5},\quad |\overrightarrow{\mathrm{OB|}}=|\overrightarrow{\mathrm{OC|}}=1 \]
を満たしているとする.$b_2>0$,$c_3>0$,また,$\displaystyle p=2 \cos \frac{\pi}{5}$とするとき,以下の問いに答えなさい.ただし,次の等式$①$を証明なしに用いてもよい.
\[ 4 \cos \frac{2\pi}{5} \cos \frac{\pi}{5}=1 \cdots\cdots ① \]

(1)等式$p^2=p+1$が成り立つことを示しなさい.
(2)$\displaystyle b_1=\frac{1-p}{2}$であることを示しなさい.
(3)点$\mathrm{E}(0,\ 0,\ 1)$に対して,$\overrightarrow{\mathrm{OC}}$を実数$k,\ l,\ m$を用いて
\[ \overrightarrow{\mathrm{OC}}=k \overrightarrow{\mathrm{OA}}+l \overrightarrow{\mathrm{OB}}+m \overrightarrow{\mathrm{OE}} \]
と表すとき,$\displaystyle m^2=\frac{2+p}{5}$であることを示しなさい.
(4)四面体$\mathrm{OABC}$の体積を$V$とする.$\displaystyle V=\frac{p}{12}$であることを示しなさい.
スポンサーリンク

「角度」とは・・・

 まだこのタグの説明は執筆されていません。