タグ「角度」の検索結果

33ページ目:全901問中321問~330問を表示)
鳥取大学 国立 鳥取大学 2014年 第2問
$x$軸の正の部分を動く点$\mathrm{P}(t,\ 0) (t>0)$と$2$点$\mathrm{A}(0,\ 3)$,$\mathrm{B}(0,\ 7)$がある.

(1)$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{P}$を通る円の中心の座標を$t$を用いて表せ.
(2)$2$点$\mathrm{A}$,$\mathrm{B}$を通り,$x$軸の正の部分に接する円の方程式を求めよ.
(3)$\angle \mathrm{APB}$の大きさを最大にする点$\mathrm{P}$の座標を求めよ.
愛媛大学 国立 愛媛大学 2014年 第1問
次の問いに答えよ.

(1)$\mathrm{AB}=1$,$\angle \mathrm{A}={90}^\circ$を満たす直角二等辺三角形$\mathrm{ABC}$において,辺$\mathrm{AB}$の中点を$\mathrm{P}$,辺$\mathrm{AC}$を$2:1$に内分する点を$\mathrm{Q}$,線分$\mathrm{CP}$と線分$\mathrm{BQ}$の交点を$\mathrm{R}$とする.このとき,線分$\mathrm{AR}$の長さを求めよ.
(2)$\displaystyle \left( \frac{1}{3} \right)^{26}$を小数で表すと,小数第何位に初めて$0$でない数字が現れるか.ただし,必要ならば$\log_{10}3=0.4771$として計算せよ.
(3)$k$を実数とし,不等式$x^2-2x-3>0$,$x^2-(k+1)x+k>0$を満たす実数$x$の集合をそれぞれ$A,\ B$とする.このとき,$A \subset B$であるための必要十分条件を$k$を用いて表せ.
長崎大学 国立 長崎大学 2014年 第2問
$\triangle \mathrm{ABC}$において,$\mathrm{AB}=5$,$\mathrm{BC}=7$,$\mathrm{CA}=6$とする.$\overrightarrow{\mathrm{AB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{AC}}=\overrightarrow{c}$とおく.次の問いに答えよ.

(1)$\triangle \mathrm{ABC}$の内心を$\mathrm{I}$とする.$\angle \mathrm{A}$の$2$等分線と$\angle \mathrm{B}$の$2$等分線は点$\mathrm{I}$で交わる.$\angle \mathrm{B}$の$2$等分線と辺$\mathrm{AC}$の交点を$\mathrm{D}$とするとき,$\mathrm{AD}:\mathrm{DC}$と$\mathrm{BI}:\mathrm{ID}$を求めよ.
(2)$\overrightarrow{\mathrm{AI}}$を$\overrightarrow{b}$と$\overrightarrow{c}$を用いて表せ.
(3)$\angle \mathrm{A}=\theta$とする.$\cos \theta$と内積$\overrightarrow{b} \cdot \overrightarrow{c}$を求めよ.
(4)実数$x,\ y$を用いて$\overrightarrow{\mathrm{AP}}=x \overrightarrow{b}+y \overrightarrow{c}$と表される点$\mathrm{P}$を考える.点$\mathrm{P}$が辺$\mathrm{AB}$の垂直$2$等分線上にあるとき,$x$と$y$が満たす関係式を求めよ.
(5)$\triangle \mathrm{ABC}$の外心を$\mathrm{O}$とする.辺$\mathrm{AB}$の垂直$2$等分線と辺$\mathrm{AC}$の垂直$2$等分線は点$\mathrm{O}$で交わる.$\overrightarrow{\mathrm{AO}}$を$\overrightarrow{b}$と$\overrightarrow{c}$を用いて表せ.
千葉大学 国立 千葉大学 2014年 第2問
$\triangle \mathrm{ABC}$において,$\angle \mathrm{A}$,$\angle \mathrm{B}$,$\angle \mathrm{C}$の大きさをそれぞれ$A,\ B,\ C$とするとき,次の等式が成り立つとする.
\[ \frac{\sin A}{5}=\frac{\sin B}{3} \]
また,$A,\ B,\ C$のうち最も大きな角は$120^\circ$であるとする.このとき,$\cos A$,$\cos B$,$\cos C$の値をそれぞれ求めよ.
慶應義塾大学 私立 慶應義塾大学 2014年 第1問
次の問いに答えよ.

(1)実数$x$の関数$f(x)=x^3-ax^2+bx+4b-2$は,$\displaystyle \lim_{x \to 4} \frac{f(x)}{x-2}=-5$を満たす.ただし,$a,\ b$は実数とする.このとき,

(i) $b$を$a$の式で表すと,$b=[$1$]a-[$2$]$である.
(ii) $x$の値が$3$から$6$まで変化するときの関数$f(x)$の平均変化率が,関数$f(x)$の$x=2+\sqrt{7}$における微分係数に等しいとき,$a=[$3$]$,$b=[$4$]$である.

(2)実数$a$についての方程式
\[ A=|2a+\displaystyle\frac{4|{3}k}+|a-\displaystyle\frac{8|{9}k} \]
において,$\displaystyle a=\frac{1}{4}$のとき$\displaystyle A=\frac{21}{4}$である.ただし,$k$は正の実数の定数とする.このとき,

(i) $\displaystyle k=\frac{[$5$]}{[$6$]}$である.
(ii) $A$の最小値は$\displaystyle \frac{[$7$]}{[$8$]}$であり,このときの$a$の値は$\displaystyle \frac{[$9$][$10$]}{[$11$]}$である.

(3)$n$を自然数とする.数列$\{a_n\}$は,$a_1=5$,$\displaystyle a_{n+1}=\frac{25}{{a_n}^2}$を満たす.このとき,

(i) $a_3=[$12$][$13$]$,$\displaystyle a_4=\frac{[$14$]}{[$15$][$16$]}$である.
(ii) $b_n=\log_5 a_n$とおくとき,数列$\{b_n\}$の一般項を$n$の式で表すと,
\[ b_n=\frac{\left( [$17$][$18$] \right)^{n-1}}{[$19$]}+\frac{[$20$]}{[$21$]} \]
である.

(4)円に内接する四角形$\mathrm{ABCD}$において,$\angle \mathrm{BCD}=60^\circ$,$\mathrm{CD}=2 \sqrt{6}$,$\angle \mathrm{DAB}>\angle \mathrm{CDA}$である.また$2$直線$\mathrm{BA}$,$\mathrm{CD}$の交点を$\mathrm{E}$,$2$直線$\mathrm{DA}$,$\mathrm{CB}$の交点を$\mathrm{F}$とすると,$\angle \mathrm{AFB}=45^\circ$,$\mathrm{DE}=3 \sqrt{2}-\sqrt{6}$である.このとき,

(i) $\angle \mathrm{AED}$の大きさは${[$22$][$23$]}^\circ$であり,辺$\mathrm{EB}$の長さは$[$24$]$である.

(ii) 三角形$\mathrm{AED}$の面積は,三角形$\mathrm{CEB}$の面積の$\displaystyle \frac{[$25$]-\sqrt{[$26$]}}{[$27$]}$倍である.

(5)$xy$平面上に放物線$C:2x^2+(k-5)x-(k+1)y+6k-14=0$と直線$\displaystyle \ell:y=\frac{1}{2}x$がある.$k$は$k \neq -1$を満たす実数とする.放物線$C$は$-1$を除くすべての実数$k$に対して$2$定点$\mathrm{A}(x_\mathrm{A},\ y_\mathrm{A})$,$\mathrm{B}(x_\mathrm{B},\ y_\mathrm{B})$を通る.ただし,$x_\mathrm{A}<x_\mathrm{B}$とする.このとき,

(i) $2$点$\mathrm{A}$,$\mathrm{B}$の座標は
\[ (x_\mathrm{A},\ y_\mathrm{A})=\left( [$28$][$29$],\ [$30$] \right),\quad (x_\mathrm{B},\ y_\mathrm{B})=\left( [$31$],\ [$32$][$33$] \right) \]
である.
(ii) 直線$\ell$上に点$\mathrm{P}$をおき,$2$点$\mathrm{A}$,$\mathrm{B}$をそれぞれ点$\mathrm{P}$と線分で結ぶとき,距離の和$\mathrm{AP}+\mathrm{BP}$を最小にする点$\mathrm{P}$の座標は$\displaystyle \left( \frac{[$34$][$35$]}{[$36$]},\ \frac{[$37$][$38$]}{[$39$]} \right)$である.
慶應義塾大学 私立 慶應義塾大学 2014年 第3問
以下の文章の空欄に適切な式を入れて文章を完成させなさい.また$(3) \ (ⅱ)$に答えなさい.

放物線$\displaystyle y=\frac{1}{2}x^2+\frac{1}{2}$を$C$で表す.$C$上にない点$\displaystyle \mathrm{P}(X,\ Y) \left( \text{ただし} Y<\frac{1}{2}X^2+\frac{1}{2} \right)$から$C$に引いた$2$本の接線のうち,接点の$x$座標が小さい方を$\ell_1$とし,大きい方を$\ell_2$とする.また$\ell_1$,$\ell_2$と$C$との接点をそれぞれ$\mathrm{Q}_1$,$\mathrm{Q}_2$とする.


(1)接線$\ell_1,\ \ell_2$の傾き$m_1,\ m_2$はそれぞれ$m_1=[あ]$,$m_2=[い]$である.
(2)$\mathrm{Q}_1$,$\mathrm{Q}_2$における$C$の法線をそれぞれ$L_1$,$L_2$とするとき,$L_1$と$L_2$の交点$\mathrm{R}$の座標を$X,\ Y$を用いた式で表すと
\[ \left( [う],\ [え] \right) \]
である.
(3)$\angle \mathrm{Q}_1 \mathrm{PQ}_2$が一定値$\alpha$(ただし$0<\alpha<\pi$)となるような点$\mathrm{P}(X,\ Y)$の軌跡を$S(\alpha)$で表す.

(i) $\displaystyle S \left( \frac{\pi}{2} \right)$の方程式は$[お]$である.

(ii) $\displaystyle \alpha \neq \frac{\pi}{2}$のときに$S(\alpha)$を求めなさい.

(4)点$\mathrm{P}(X,\ Y)$が$\displaystyle S \left( \frac{\pi}{2} \right)$の上を動くとき,点$\mathrm{R}$が描く軌跡の方程式は$[か]$である.
慶應義塾大学 私立 慶應義塾大学 2014年 第4問
以下の文章の空欄に適切な数または式を入れて文章を完成させなさい.

三角形$\mathrm{ABC}$において$\mathrm{AB}=\mathrm{AC}=1$,$\angle \mathrm{BAC}=2\theta$とする.

(1)三角形$\mathrm{ABC}$の内接円$C_1$の半径を$R_1(\theta)$とする.$R_1(\theta)$を$\theta$の式で表すと$R_1(\theta)=[あ]$である.また$\theta$を$\displaystyle 0<\theta<\frac{\pi}{2}$の範囲で変化させるときに$R_1(\theta)$が最大値をとるような$\theta$の値を$\theta_1$とすると
\[ \sum_{k=1}^\infty \sin^k \theta_1=[い] \]
が成り立つ.
(2)三角形$\mathrm{ABC}$の内側に次のように円$C_2$,$C_3$,$\cdots$,$C_n$,$\cdots$を作る.円$C_1$の外側にあって円$C_1$および辺$\mathrm{AB}$,$\mathrm{AC}$に同時に接する円を$C_2$とし,円$C_1$,$C_2$の外側にあって円$C_2$および辺$\mathrm{AB}$,$\mathrm{AC}$に同時に接する円を$C_3$とする.以下同様に自然数$n \geqq 2$に対して,円$C_1$,$C_2$,$\cdots$,$C_{n-1}$の外側にあって円$C_{n-1}$および辺$\mathrm{AB}$,$\mathrm{AC}$に同時に接する円を$C_n$とする.$C_n$の半径$R_n(\theta)$を$\theta$と$n$の式で表すと$R_n(\theta)=[う]$である.
(3)$x$の$2$次式$g_n(x)=[え]$に対して
\[ \frac{d}{d\theta}\log R_n(\theta)=-\frac{g_n(\sin \theta)}{\sin \theta \cos \theta} \]
が成り立つ.また$\theta$を$\displaystyle 0<\theta<\frac{\pi}{2}$の範囲で変化させるときに$R_n (\theta)$が最大値をとるような$\theta$の値を$\theta_n$とすると$\sin \theta_n=[お]$である.
(4)$\displaystyle \lim_{n \to \infty} n \sin \theta_n=[か]$である.このことから,$\theta=\theta_n$のときの円$C_n$の面積$S_n$に対して$\displaystyle \lim_{n \to \infty}n^2S_n=[き]$が成り立つ.
慶應義塾大学 私立 慶應義塾大学 2014年 第2問
$\mathrm{O}$を原点とする$xy$平面上に円$C:x^2+y^2=r^2$と放物線$\displaystyle D:y=\frac{1}{2}x^2-t$がある.ただし$r$と$t$はそれぞれ正の実数の定数とする.点$(0,\ -55)$から放物線$D$に傾きが正の接線を引くとき,その接線の傾きは$3 \sqrt{6}$である.放物線$D$上には$x$座標がそれぞれ$-4 \sqrt{3}$,$4 \sqrt{3}$である点$\mathrm{P}$,$\mathrm{Q}$があり,円$C$はこの$2$点$\mathrm{P}$,$\mathrm{Q}$を通る.このとき,

(1)$t=[$40$][$41$]$である.
(2)$r=[$42$]$である.
(3)円$C$と$2$線分$\mathrm{OP}$,$\mathrm{OQ}$で囲まれる$2$つの扇形のうち,$\angle \mathrm{POQ}$が$\pi$より小さい方の面積は$\displaystyle \frac{[$43$][$44$]}{[$45$]} \pi$である.
(4)円$C$と放物線$D$で囲まれた図形のうち,
\[ \left\{ \begin{array}{l}
x^2+y^2 \geqq r^2 \\
y \geqq \displaystyle\frac{1}{2}x^2-t
\end{array} \right. \]
で表される図形の面積は$\displaystyle [$46$][$47$][$48$] \sqrt{[$49$]}-\frac{[$50$][$51$]}{[$52$]} \pi$である.
慶應義塾大学 私立 慶應義塾大学 2014年 第1問
次の$[ ]$にあてはまる最も適当な数または式を解答欄に記入しなさい.

(1)等差数列$\{a_n\}$は,初項から第$5$項までの和は$50$で,$a_5=16$であるとする.このとき,一般項$a_n$は,$a_n=[ア]$となり,初項から第$n$項までの和$S_n$は$S_n=[イ]$となる.
(2)$(x+1)^8 (x-1)^4$を展開したとき,$x^{10}$の項の係数は$[ウ]$である.また,$(x^2+x+1)^6$を展開したとき,$x^{10}$の項の係数は$[エ]$である.
(3)三角形$\mathrm{ABC}$において,$\angle \mathrm{A}=60^\circ$,$\mathrm{AB}=6$,$\mathrm{AC}=7$のとき,三角形$\mathrm{ABC}$の面積$S$は$S=[オ]$,辺$\mathrm{BC}$の長さは$\mathrm{BC}=[カ]$,三角形$\mathrm{ABC}$の外接円の半径$R$は$R=[キ]$である.
(4)$12^n$の正の約数の個数が$28$個となるような自然数$n$は,$n=[ク]$である.
慶應義塾大学 私立 慶應義塾大学 2014年 第1問
次の問いに答えよ.

(1)$3$次方程式$x^3+1=0$の$-1$でない解の$1$つを$\alpha$とするとき,
\[ (3+7 \alpha)(7+3 \alpha)-4(1+\alpha^2)=[ア] \alpha \]
となる.
(2)三角形$\mathrm{ABC}$において,
\[ \mathrm{AB}=2,\quad \angle \mathrm{ACB}=\frac{\pi}{4},\quad \angle \mathrm{BAC}=\frac{\pi}{3} \]
であるとき,$\mathrm{AC}=[イ]$である.
(3)$X=\left( \begin{array}{rr}
2 & 1 \\
-2 & -1
\end{array} \right)$,$Y=\left( \begin{array}{rr}
-3 & 0 \\
0 & -3
\end{array} \right)$および自然数$n$に対し,
\[ 3X^n-5X^3Y+X^2Y^2+XY^3+Y^n=\left( \begin{array}{cc}
[ウ] & [エ] \\
[オ] & [カ]
\end{array} \right) \]
となる.
(4)$a,\ b$を$a>0$,$b>1$となる実数とする.放物線$y=-ax^2+b$と円$x^2+y^2=1$の共有点が$2$個であるための必要十分条件は,$b=[キ]$かつ$a>[ク]$が成り立つことである.ただし,$[キ]$には$a$の式,$[ク]$には数を記入すること.
スポンサーリンク

「角度」とは・・・

 まだこのタグの説明は執筆されていません。