タグ「角度」の検索結果

10ページ目:全901問中91問~100問を表示)
東京医科大学 私立 東京医科大学 2016年 第1問
次の問いに答えよ.

(1)任意の正の数$t$に対して,座標平面上の$3$点$\mathrm{P}_t(3-t,\ 6+2t)$,$\mathrm{O}(0,\ 0)$,$\mathrm{A}(3,\ 6)$を頂点とする三角形$\mathrm{P}_t \mathrm{OA}$を考える.$\angle \mathrm{P}_t \mathrm{OA}=\theta_t$とすれば,
\[ \lim_{t \to \infty} \cos \theta_t=\frac{[ア]}{[イ]} \]
である.
(2)$a$を正の定数とする.$x$についての$2$次方程式$x^2+ax+4a=0$の$1$つの解が他の解の$4$倍であるとき,
\[ a=[ウエ] \]
である.
中京大学 私立 中京大学 2016年 第1問
$\mathrm{AB}=1+\sqrt{3}$,$\mathrm{AC}=2$,$\angle \mathrm{BAC}={60}^\circ$である$\triangle \mathrm{ABC}$がある.辺$\mathrm{BC}$上に点$\mathrm{H}$を$\mathrm{AH} \perp \mathrm{BC}$となるようにとる.このとき,$\triangle \mathrm{ABC}$の面積は$\displaystyle \frac{[ア]+\sqrt{[イ]}}{[ウ]}$であり,$\displaystyle \mathrm{HC}=\frac{\sqrt{[エ]}-\sqrt{[オ]}}{[カ]}$である.
甲南大学 私立 甲南大学 2016年 第2問
円に内接する四角形$\mathrm{ABCD}$が,$\mathrm{AB}=3$,$\mathrm{BC}=\sqrt{2}$,$\angle \mathrm{ABC}={45}^\circ$,$\angle \mathrm{ABD}={30}^\circ$のとき,以下の問いに答えよ.

(1)対角線$\mathrm{AC}$の長さを求めよ.
(2)辺$\mathrm{AD}$と辺$\mathrm{CD}$の長さを求めよ.
(3)三角形$\mathrm{ABD}$の面積を求めよ.
甲南大学 私立 甲南大学 2016年 第2問
円に内接する四角形$\mathrm{ABCD}$が,$\mathrm{AB}=3$,$\mathrm{BC}=\sqrt{2}$,$\angle \mathrm{ABC}={45}^\circ$,$\angle \mathrm{ABD}={30}^\circ$のとき,以下の問いに答えよ.

(1)対角線$\mathrm{AC}$の長さを求めよ.
(2)辺$\mathrm{AD}$と辺$\mathrm{CD}$の長さを求めよ.
(3)三角形$\mathrm{ABD}$の面積を求めよ.
岡山理科大学 私立 岡山理科大学 2016年 第4問
$\triangle \mathrm{ABC}$において,内心を$\mathrm{I}$,外心を$\mathrm{O}$,内接円の半径を$r$,外接円の半径を$R$とするとき,次の問いに答えよ.

(1)$\angle \mathrm{BAC}=\alpha$とするとき,$\angle \mathrm{BIC}$を$\alpha$の式で表せ.
(2)直線$\mathrm{AI}$と$\triangle \mathrm{ABC}$の外接円との$\mathrm{A}$でない交点を$\mathrm{D}$とするとき,$3$点$\mathrm{B}$,$\mathrm{C}$,$\mathrm{I}$は$\mathrm{D}$を中心とする同一円周上にあることを証明せよ.
(3)$2$点$\mathrm{I}$,$\mathrm{O}$の距離を$d$とする.$\mathrm{AB}=\mathrm{AC}$のとき,等式$(R+d)(R-d)=2rR$および不等式$R \geqq 2r$を証明せよ.
(4)$\mathrm{AB} \neq \mathrm{AC}$のとき,不等式$R>2r$を証明せよ.
広島工業大学 私立 広島工業大学 2016年 第2問
中心$\mathrm{O}$,半径$2$の円に内接する$\triangle \mathrm{ABC}$において,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とする.また,$\mathrm{CD}$をこの円の直径とし,$\overrightarrow{\mathrm{DA}}+\overrightarrow{\mathrm{CB}}=\overrightarrow{p}$とするとき,次の問いに答えよ.

(1)$\overrightarrow{p}$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(2)$\overrightarrow{c}=-\overrightarrow{p}$が成り立つとき,内積$\overrightarrow{a} \cdot \overrightarrow{b}$を求め,$\angle \mathrm{AOB}$を求めよ.
(3)$k$が実数で$\overrightarrow{c}=k \overrightarrow{p}$が成り立つとき,$\mathrm{AC}=\mathrm{BC}$であることを証明せよ.
広島工業大学 私立 広島工業大学 2016年 第6問
四角形$\mathrm{ABCD}$において,$\triangle \mathrm{ABC}$は$\angle \mathrm{C}={90}^\circ$の直角二等辺三角形,$\triangle \mathrm{ACD}$は正三角形である.$\mathrm{AC}=1$のとき,次の問いに答えよ.

(1)四角形$\mathrm{ABCD}$の面積を求めよ.
(2)$\triangle \mathrm{BCD}$の面積を求めよ.
(3)$\mathrm{BD}^2$を求めよ.
(4)$(3)$を用いて,$\displaystyle \cos {105}^\circ=\frac{\sqrt{2}-\sqrt{6}}{4}$を示せ.
千葉工業大学 私立 千葉工業大学 2016年 第3問
次の各問に答えよ.

(1)三角形$\mathrm{OAB}$において,$\mathrm{OA}=9$,$\mathrm{OB}=7$,内積$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}=57$である.$\mathrm{AB}=[ア]$であり,頂点$\mathrm{O}$から直線$\mathrm{AB}$に下ろした垂線を$\mathrm{OP}$とすると
\[ \overrightarrow{\mathrm{OP}}=\overrightarrow{\mathrm{OA}}+\frac{[イ]}{[ウ]} \overrightarrow{\mathrm{AB}} \]
である.$\angle \mathrm{AOB}$の二等分線と辺$\mathrm{AB}$の交点を$\mathrm{Q}$とすると,$\displaystyle \mathrm{AQ}=\frac{[エ]}{[オ]}$であり,$\displaystyle \mathrm{PQ}=\frac{[カキ]}{[ク]}$である.

(2)$xy$平面上に円$K:x^2+y^2-4x-2y+4=0$と直線$\ell:y=ax+a+1$がある.$\ell$は定数$a$の値によらず,点$\mathrm{P}([ケコ],\ [サ])$を通る.
$a=0$のとき,$\ell$と$K$との$2$つの交点を$\mathrm{A}$,$\mathrm{B}$とすると,$\mathrm{PA} \cdot \mathrm{PB}=[シ]$である.
また,$\ell$が$K$と$2$点$\mathrm{C}$,$\mathrm{D}$で交わり,$\mathrm{PC}:\mathrm{PD}=2:3$であるとき,
\[ \mathrm{CD}=\frac{[ス] \sqrt{[セ]}}{[ソ]} \]
であり,$\displaystyle a=\pm \frac{\sqrt{[タ]}}{[チ]}$である.
工学院大学 私立 工学院大学 2016年 第3問
$\angle \mathrm{B}=\angle \mathrm{C}={72}^\circ$,$\mathrm{BC}=2$の二等辺三角形$\mathrm{ABC}$がある.$\angle \mathrm{B}$の二等分線と辺$\mathrm{CA}$との交点を$\mathrm{D}$,$\mathrm{D}$から辺$\mathrm{AB}$へ下ろした垂線と辺$\mathrm{AB}$との交点を$\mathrm{E}$とする.以下の問いに答えよ.

(1)線分$\mathrm{DA}$の長さを求めよ.
(2)線分$\mathrm{CD}$の長さを求めよ.
(3)線分$\mathrm{AE}$の長さを求めよ.
(4)$\cos {36}^\circ$の値を求めよ.
玉川大学 私立 玉川大学 2016年 第2問
次の$[ ]$を埋めよ.

(1)三角形$\mathrm{ABC}$において,$\mathrm{AB}=2$,$\mathrm{BC}=\sqrt{3}$であるとする.$\mathrm{CA}=x$とおくとき,
\[ \cos \angle \mathrm{BAC}=\frac{[ア]+x^2}{[イ]x} \]
である.$\angle \mathrm{BAC}$の最大は,${[ウエ]}^\circ$であり,このとき,$x=[オ]$である.
(2)$1 \leqq x \leqq 100$とする.このとき,方程式$2x+3y=31$をみたす整数の組$(x,\ y)$の個数は,$[カキ]$個で,$x$が最小となる解は,$(x,\ y)=([ク],\ [ケ])$である.
(3)方程式
\[ 2 \sin^3 x+\cos 2x-\sin x=0 \]
を解くと,$n$を任意の整数として
\[ x=\frac{\pi}{[コ]}+2n \pi,\ \frac{\pi}{[サ]}+\frac{1}{[シ]}n \pi \]
となる.
(4)$2$つのベクトルを$\overrightarrow{a}=(t,\ -1)$,$\overrightarrow{b}=(t+\sqrt{2}-1,\ \sqrt{2})$とする.このとき,$\overrightarrow{a}$と$\overrightarrow{b}$のなす角が鋭角になる条件は,
\[ t>[ス],\quad t<-\sqrt{[セ]} \]
であり,鈍角になる条件は,
\[ -\sqrt{[ソ]}<t<[タ] \]
である.
(5)数列$\{a_n\}$の初項から第$n$項までの和$S_n$が,$S_n=n^2+n$で表されるとき,
\[ a_n=[チ]n \]
である.また,
\[ \sum_{k=1}^n (a_k+1)^2=\frac{n}{[ツ]} ([テ]n^2+[トナ]n+[ニヌ]) \]
である.
スポンサーリンク

「角度」とは・・・

 まだこのタグの説明は執筆されていません。