タグ「複素数」の検索結果

1ページ目:全105問中1問~10問を表示)
京都大学 国立 京都大学 2016年 第5問
実数を係数とする$3$次式$f(x)=x^3+ax^2+bx+c$に対し,次の条件を考える.

\mon[(イ)] 方程式$f(x)=0$の解であるすべての複素数$\alpha$に対し,$\alpha^3$もまた$f(x)=0$の解である.
\mon[(ロ)] 方程式$f(x)=0$は虚数解を少なくとも$1$つもつ.

この$2$つの条件(イ),(ロ)を同時に満たす$3$次式をすべて求めよ.
京都大学 国立 京都大学 2016年 第6問
複素数を係数とする$2$次式$f(x)=x^2+ax+b$に対し,次の条件を考える.

\mon[(イ)] $f(x^3)$は$f(x)$で割り切れる.
\mon[(ロ)] $f(x)$の係数$a,\ b$の少なくとも一方は虚数である.

この$2$つの条件(イ),(ロ)を同時に満たす$2$次式をすべて求めよ.
九州大学 国立 九州大学 2016年 第5問
以下の問いに答えよ.

(1)$\theta$を$0 \leqq \theta<2\pi$を満たす実数,$i$を虚数単位とし,$z$を$z=\cos \theta+i \sin \theta$で表される複素数とする.このとき,整数$n$に対して次の式を証明せよ.
\[ \cos n\theta=\frac{1}{2} \left( z^n+\frac{1}{z^n} \right),\quad \sin n\theta=-\frac{i}{2} \left( z^n-\frac{1}{z^n} \right) \]
(2)次の方程式を満たす実数$x (0 \leqq x<2\pi)$を求めよ.
\[ \cos x+\cos 2x-\cos 3x=1 \]
(3)次の式を証明せよ.
\[ \sin^2 {20}^\circ+\sin^2 {40}^\circ+\sin^2 {60}^\circ+\sin^2 {80}^\circ=\frac{9}{4} \]
東京大学 国立 東京大学 2016年 第4問
$z$を複素数とする.複素数平面上の$3$点$\mathrm{A}(1)$,$\mathrm{B}(z)$,$\mathrm{C}(z^2)$が鋭角三角形をなすような$z$の範囲を求め,図示せよ.
名古屋工業大学 国立 名古屋工業大学 2016年 第4問
実数$t$に対し,複素数
\[ \left( \frac{1}{2}+\cos t+i \sin t \right)^2 \]
の実部を$f(t)$,虚部を$g(t)$とする.座標平面上に
\[ \text{曲線}C:x=f(t),\quad y=g(t) \quad (0 \leqq t \leqq \pi) \]
がある.

(1)$0 \leqq t \leqq \pi$のとき$f(t)$のとる値の範囲を求めよ.

(2)曲線$C$上の点$\displaystyle \mathrm{P} \left( f \left( \frac{\pi}{3} \right),\ g \left( \frac{\pi}{3} \right) \right)$における接線の方程式を求めよ.

(3)曲線$C$の$y \leqq 0$の範囲にある部分と$x$軸とで囲まれた図形の面積$S$を求めよ.
岡山大学 国立 岡山大学 2016年 第1問
複素数$\displaystyle \omega=\frac{-1+\sqrt{3}i}{2}$について,以下の問いに答えよ.

(1)$\omega^2+\omega^4$,$\omega^5+\omega^{10}$の値を求めよ.
(2)$n$を正の整数とするとき,$\omega^n+\omega^{2n}$の値を求めよ.
(3)$n$を正の整数とするとき,
\[ (\omega+2)^n+(\omega^2+2)^n \]
が整数であることを証明せよ.
富山大学 国立 富山大学 2016年 第3問
次の条件(ア),(イ)を満たす複素数$z$を考える.

(ア) $\displaystyle z+\frac{i}{z}$は実数である
(イ) $z$の虚部は正である

ただし,$i$は虚数単位である.このとき,次の問いに答えよ.

(1)$r=|z|$とおくとき,$z$を$r$を用いて表せ.
(2)$z$の虚部が最大となるときの$z$を求めよ.
愛知教育大学 国立 愛知教育大学 2016年 第6問
次の問いに答えよ.

(1)複素数平面において,方程式$|z+1|=|z-1|$を満たす点$z$全体はどのような図形か答えよ.
(2)複素数$z (z \neq -1)$に対し,$\displaystyle w=\frac{i(1-z)}{1+z}$とする.このとき,どんな$z$に対しても$w=-i$とはならないことを示せ.
(3)点$z$が$(1)$で求めた図形の上を動くとき,$(2)$の点$w$はどのような図形を描くか答えよ.
金沢大学 国立 金沢大学 2016年 第1問
数列$\{a_n\}$と$\{b_n\}$は
\[ \left\{ \begin{array}{l}
a_1=b_1=2, \phantom{\displaystyle\frac{[ ]}{[ ]}} \\
\displaystyle a_{n+1}=\frac{\sqrt{2}}{4}a_n-\frac{\sqrt{6}}{4}b_n,\quad b_{n+1}=\frac{\sqrt{6}}{4}a_n+\frac{\sqrt{2}}{4}b_n \quad (n=1,\ 2,\ 3,\ \cdots) \phantom{\displaystyle\frac{[ ]}{[ ]}}
\end{array} \right. \]
を満たすものとする.$a_n$を実部とし$b_n$を虚部とする複素数を$z_n$で表すとき,次の問いに答えよ.

(1)$z_{n+1}=wz_n$を満たす複素数$w$と,その絶対値$|w|$を求めよ.
(2)複素数平面上で,点$z_{n+1}$は点$z_n$をどのように移動した点であるかを答えよ.
(3)数列$\{a_n\}$と$\{b_n\}$の一般項を求めよ.
(4)複素数平面上の$3$点$0,\ z_n,\ z_{n+1}$を頂点とする三角形の周と内部を黒く塗りつぶしてできる図形を$T_n$とする.このとき,複素数平面上で$T_1,\ T_2,\ \cdots,\ T_n,\ \cdots$によって黒く塗りつぶされる領域の面積を求めよ.
静岡大学 国立 静岡大学 2016年 第4問
$i$を虚数単位とするとき,次の各問に答えよ.

(1)複素数$c=1+i$について,$c$と共役な複素数$\overline{c}$および$|c|^2$をそれぞれ求めよ.
(2)複素数$z$が$|z|=1$を満たすとする.このとき,$\displaystyle z+\frac{1}{z}$が実数であることを証明せよ.
(3)$\alpha,\ \beta$を複素数として$\alpha$の実部と虚部がともに正であるとする.また,$|\alpha|=|\beta|=1$とする.複素数$\displaystyle i \alpha,\ \frac{i}{\alpha},\ \beta$で表される複素数平面上の$3$点が,ある正三角形の$3$頂点であるとき,$\alpha,\ \beta$をそれぞれ求めよ.
スポンサーリンク

「複素数」とは・・・

 まだこのタグの説明は執筆されていません。