タグ「複数」の検索結果

1ページ目:全6問中1問~10問を表示)
北九州市立大学 公立 北九州市立大学 2016年 第4問
$1$個のサイコロを$1$回投げ,出た目の数と同じ回数だけ$1$枚のコインを繰り返し投げる.以下の問題に答えよ.

(1)サイコロの出た目が$4$であった場合に,コインの表の出た回数と裏の出た回数が同じである確率を求めよ.
(2)コインの表と裏が交互に出る確率を求めよ.ただし,交互とは複数回コインを投げて表と裏が互い違いに出る場合をいう.
(3)コインの表の出た回数と裏の出た回数が同じである確率を求めよ.
(4)コインの表の出た回数が裏の出た回数より多い確率を求めよ.
(5)コインの表の出た回数と裏の出た回数が同じである場合に,サイコロの出た目が$4$であった確率を求めよ.
慶應義塾大学 私立 慶應義塾大学 2014年 第3問
正六角形$\mathrm{ABCDEF}$の頂点$\mathrm{D}$と正六角形の外部の点$\mathrm{G}$を線分で結んだ下のような図形がある.動点$\mathrm{P}$はこの図形の線分上を動き,点から点へ移動する.動点$\mathrm{P}$の隣接する点への移動には$1$秒間を要する.また,隣接する点が複数あるときは,等しい確率でどれか$1$つの点に移動するものとする.
(図は省略)

(1)動点$\mathrm{P}$が$\mathrm{A}$から出発して$4$秒後に$\mathrm{G}$にいる確率は$\displaystyle \frac{[$53$]}{[$54$][$55$]}$である.

(2)動点$\mathrm{P}$が$\mathrm{A}$から出発して$5$秒後に$\mathrm{D}$にいる確率は$\displaystyle \frac{[$56$][$57$]}{[$58$][$59$]}$である.

(3)動点$\mathrm{P}$が$\mathrm{A}$から出発して$\mathrm{D}$に到達した時点で移動を終了するとき,$2n+1$秒以内に移動を終了する確率は$\displaystyle \frac{{[$60$]}^n-{[$61$]}^n}{{[$62$]}^n}$である.ただし,$n$は自然数とする.
早稲田大学 私立 早稲田大学 2014年 第2問
以下の不等式$(ⅰ)$~$\tokeigo$をすべて満たす点$(x,\ y)$からなる領域を$S$とする.

$(ⅰ)$ $-x+2y \leqq 20$
$(ⅱ)$ $2x+3y \leqq 44$
$(ⅲ)$ $4x-y \leqq 32$
$\tokeishi$ $x \geqq 0$
$\tokeigo$ $y \geqq 0$

次の問いに答えよ.

(1)領域$S$において$x+3y$を最大にする点$\mathrm{A}(x,\ y)$の$x$座標は$[オ]$,$y$座標は$[カ]$である.このとき$x+3y$の最大値$M$は$[キ]$である.
(2)$a$を実数,$b$を正の実数とする.領域$S$において$ax+by$を最大にする点が,$(1)$で求めた点$\mathrm{A}(x,\ y)$のみの場合,$\displaystyle \frac{a}{b}$がとりうる値の範囲は
\[ [ク]<\frac{a}{b}<[ケ] \]
である.
(3)$a$を正の実数,$b$を正の実数とする.領域$S$において$ax+by$を最大にする点が複数あるとき,$\displaystyle \frac{a}{b}$がとりうる値は$[コ]$である.
(4)$c$を実数とし,上記の不等式$(ⅰ)$,$(ⅱ)$,$\tokeishi$,$\tokeigo$と不等式
\[ (ⅲ)^* 4x-y \leqq c \]
をすべて満たす点$(x,\ y)$からなる領域を$S^{*}$とする.領域$S^*$において$x+3y$の最大値が$(1)$で求めた$M$であるとすると,$c$がとりうる最小値は$[サ]$である.
上智大学 私立 上智大学 2014年 第3問
$1$から$10$までの数字を$1$つずつ書いた$10$枚のカードを数字の小さい順に左から右に並べる.この中から$3$枚を無作為に選び,いずれのカードも元の位置と異なる位置に置くという操作を考える.この操作を$2$回以上続けて行う場合,$2$回目以降はカードの並びを一番最初の状態に戻すことはせず,$1$回前の操作で置き換えられた状態から$3$枚を無作為に選ぶ.また,選んだ$3$枚のカードについて元の位置と異なる位置への置き方が複数あるとき,いずれの置き方も等しい確率で選ばれるものとする.置き換えの操作を$n$回続けて行ったとき,一番左のカードが$10$である確率を$P_n$で表す.

(1)$\displaystyle P_1=\frac{[ハ]}{[ヒ]}$である.
(2)$n$回の操作の後で一番左のカードが$10$であり,$(n+1)$回目の操作の後も一番左のカードが$10$となる確率を$P_n$の式で表すと$\displaystyle \frac{[フ]}{[ヘ]}P_n$となる.
(3)$n$回の操作の後で一番左のカードが$10$ではなく,$(n+1)$回目の操作の後で一番左のカードが$10$となる確率を$P_n$の式で表すと$\displaystyle \frac{[ホ]P_n+[マ]}{[ミ]}$となる.
(4)$P_{n+1}$を$P_n$の式で表すと
\[ P_{n+1}=\frac{[ム]}{[メ]}P_n+\frac{[モ]}{[ヤ]} \]
となる.
(5)$\displaystyle P_n=\frac{[ユ]}{[ヨ]} \left( \frac{[ラ]}{[リ]} \right)^n+\frac{[ル]}{[レ]}$である.
横浜市立大学 公立 横浜市立大学 2014年 第4問
$n$を$4$以上の整数とする.$1$番から$n$番までの番号がふられたボールが$1$つずつある.このとき,以下の問いに答えよ.

(1)以下のような操作でボールを$1$列に並べる:

(i) $1$番のボールを適当な位置におく.
(ii) $2$番のボールを$1$番のボールの左または右に同じ確率でおく.
(iii) $3$番のボールをすでに並んでいる$2$つのボールの左または間または右に同じ確率でおく.
\mon[$\tokeishi$] 以下$n$番まで番号順に,$k$番のボールを,すでに並んでいるボールの一番左または間または一番右に同じ確率でおく,ことを繰り返す.

例えば,左から$2$番,$1$番,$3$番のボールが並んでいるとき,$4$番のボールが$2$番と$1$番の間におかれる確率は$\displaystyle \frac{1}{4}$である.
$n$番のボールをおき終えたとき,$i$番のボールが左から$j$番目に並ぶ確率は$\displaystyle \frac{1}{n}$であることを証明せよ.ただし,$i$と$j$は$1$以上,$n$以下の整数とする.
(2)$(1)$のボールの列を,(左から)番号順に並び替えるため,以下の操作を考える:
隣り合った$2$つのボールの組で,左のボールの番号が右のそれより大きなもの(入れ替え可能な組と呼ぶ)が存在するとき,そのようなボールの組を$1$つ選び,入れ替える.
入れ替え可能な組が複数あった場合に,入れ替える組をどのように選んだとしても,この操作を繰り返すことにより,すべてのボールの列は,必ず番号順の列になることを証明せよ.
(3)$(2)$の操作の回数は,入れ替える組の選び方とは無関係であることを証明せよ.
(4)$(2)$においてボールの列を番号順に並べ替えるとき,$i$番のボールを,より番号の小さいボールと入れ替える回数の期待値を$E_i$とする.このとき,
\[ \sum_{i=1}^n E_i \]
を求めよ.
大阪府立大学 公立 大阪府立大学 2011年 第1問
複数の参加者がグー,チョキ,パーを出して勝敗を決めるジャンケンについて,以下の問いに答えよ.ただし,各参加者は,グー,チョキ,パーをそれぞれ$\displaystyle \frac{1}{3}$の確率で出すものとする.

(1)$4$人で一度だけジャンケンをするとき,$1$人だけが勝つ確率,$2$人が勝つ確率,$3$人が勝つ確率,引き分けになる確率をそれぞれ求めよ.
(2)$n$人で一度だけジャンケンをするとき,$r$人が勝つ確率を$n$と$r$を用いて表わせ.ただし,$n \geqq 2,\ 1 \leqq r < n$とする.
(3)$\displaystyle \sum_{r=1}^{n-1} {}_n \text{C}_r=2^n-2$が成り立つことを示し,$n$人で一度だけジャンケンをするとき,引き分けになる確率を$n$を用いて表わせ.ただし,$n \geqq 2$とする.
スポンサーリンク

「複数」とは・・・

 まだこのタグの説明は執筆されていません。