タグ「自然数」の検索結果

67ページ目:全1172問中661問~670問を表示)
大阪府立大学 公立 大阪府立大学 2013年 第2問
次の式で定められる数列$\{a_n\}$について,以下の問いに答えよ.
\[ a_1=5,\quad a_{n+1}=\frac{a_n}{2}+\frac{8}{a_n} \quad (n=1,\ 2,\ 3,\ \cdots) \]

(1)すべての自然数$n$に対して$a_n>4$が成り立つことを示せ.
(2)すべての自然数$n$に対して$a_{n+1}<a_n$が成り立つことを示せ.
(3)すべての自然数$n$に対して$\displaystyle a_n-4 \leqq \frac{1}{2^{n-1}}$が成り立つことを示せ.
大阪府立大学 公立 大阪府立大学 2013年 第5問
$a,\ b$は実数の定数で$|a|<|b|$をみたすとする.行列$A$を
\[ A=\frac{1}{3} \left( \begin{array}{cc}
a+2b & -2a+2b \\
-a+b & 2a+b
\end{array} \right) \]
によって定めるとき,以下の問いに答えよ.

(1)$x_0 \left( \begin{array}{c}
2 \\
1
\end{array} \right)+y_0 \left( \begin{array}{c}
-1 \\
1
\end{array} \right)=\left( \begin{array}{c}
2 \\
13
\end{array} \right)$をみたす$x_0,\ y_0$を求めよ.
(2)$A \left( \begin{array}{c}
2 \\
1
\end{array} \right),\ A \left( \begin{array}{c}
-1 \\
1
\end{array} \right)$を求めよ.
(3)$n$を自然数とする.$x_n \left( \begin{array}{c}
2 \\
1
\end{array} \right)+y_n \left( \begin{array}{c}
-1 \\
1
\end{array} \right)=A^n \left( \begin{array}{c}
2 \\
13
\end{array} \right)$をみたす$x_n,\ y_n$を$a,\ b,\ n$を用いて表せ.
(4)数列$\{p_n\},\ \{q_n\}$を$\left( \begin{array}{c}
p_n \\
q_n
\end{array} \right)=A^n \left( \begin{array}{c}
2 \\
13
\end{array} \right)$によって定めるとき,$\displaystyle \lim_{n \to \infty}\frac{q_n}{p_n}$を求めよ.
会津大学 公立 会津大学 2013年 第3問
$n$を自然数とする.行列$A=\left( \begin{array}{cc}
1 & 1 \\
-1 & 3
\end{array} \right)$について,次の手順で$A^n$を求める.このとき,以下の空欄をうめよ.


(1)行列$P=\left( \begin{array}{cc}
1 & 0 \\
a & b
\end{array} \right)$が$P^{-1} \left( \begin{array}{cc}
2 & 1 \\
0 & 2
\end{array} \right) P=A$を満たすとき,$a=[イ]$,$b=[ロ]$である.

(2)$\left( \begin{array}{cc}
2 & 1 \\
0 & 2
\end{array} \right)^n=\left( \begin{array}{cc}
x_n & \displaystyle\frac{n}{2}x_n \\
0 & x_n
\end{array} \right)$と表せる.このとき,$x_n=[ハ]$である.

(3)$A^n=[ニ]$である.
会津大学 公立 会津大学 2013年 第6問
$n$を自然数とするとき,次の等式が成り立つことを数学的帰納法を用いて証明せよ.
\[ 1^3+2^3+3^3+\cdots +n^3=\frac{n^2(n+1)^2}{4} \]
京都府立大学 公立 京都府立大学 2013年 第1問
以下の問いに答えよ.

(1)$\sqrt[3]{7}$が無理数であることを証明せよ.
(2)$\sqrt{7}$が無理数であることを用いて,$\sqrt{11}-\sqrt{7}$が無理数であることを証明せよ.
(3)$k,\ l,\ m,\ n$は$k=\sqrt{l^2+m^2+n^2}$を満たす自然数とする.このとき,$l,\ m,\ n$のうち少なくとも$2$つが偶数であることを証明せよ.
京都府立大学 公立 京都府立大学 2013年 第4問
$a,\ b,\ c$は$0$でない実数とする.行列$A=\left( \begin{array}{cc}
a & b \\
b & c
\end{array} \right)$について,以下の問いに答えよ.

(1)$BAB$は対角行列,かつ,$B^2$は単位行列とするとき,$B=\left( \begin{array}{cc}
p & q \\
q & r
\end{array} \right)$の成分はすべて実数であることを示せ.
(2)$\displaystyle a=\frac{5}{8},\ b=-\frac{1}{2},\ c=\frac{1}{3}$とする.自然数$n$に対して$\left( \begin{array}{c}
x_n \\
y_n
\end{array} \right)=A^n \left( \begin{array}{c}
3 \\
4
\end{array} \right)$とする.このとき,$\displaystyle \lim_{n \to \infty}x_n=0$かつ$\displaystyle \lim_{n \to \infty}y_n=0$を示せ.
宮城大学 公立 宮城大学 2013年 第1問
次の空欄$[ア]$から$[サ]$にあてはまる数や式を書きなさい.

(1)次の等式を満たす自然数$n$の値を求めたい.
\[ \log_5 \left( \comb{n}{n-2} \right) =\frac{1}{2} \log_5 784 \]
$784=[ア]^2 \times [イ]^2$(ただし,$[ア]$,$[イ]$は$1<[ア]<[イ]<10$を満たす自然数とする.)だから,
\[ \log_5 \left( \comb{n}{n-2} \right) =\log_5 [ウ] \]
ゆえに,$\displaystyle \frac{[エ]}{2 \cdot 1}=[ウ]$である.$n$は自然数だから,$n=[オ]$である.
(2)$2$次関数$y=-x^2+2mx+3m^2$を平方完成すれば,
\[ y=-\left( x-[カ] \right)^2+[キ] \quad \cdots\cdots① \]
となる.したがって,$①$の頂点の軌跡は,放物線
\[ y=[ク]x^2 \quad \cdots\cdots② \]
上にある.
$2$つの放物線$①$と$②$の交点の$x$座標を$m$を用いて表せば,
\[ x=[ケ] \quad \text{または} \quad x=[コ] \text{である.} \]
また,$2$つの放物線$①$と$②$で囲まれた部分の面積が$\displaystyle \frac{5}{6}$のとき,
\[ m=[サ] \quad \text{(ただし,} m>0 \text{とする.)である.} \]
宮城大学 公立 宮城大学 2013年 第2問
次の空欄$[タ]$から$[ト]$にあてはまる数や式を書きなさい.

次のような整数の数列$\{a_n\}$がある.
$1,\ 1,\ 2,\ 1,\ 1,\ 2,\ 3,\ 2,\ 1,\ 1,\ 2,\ 3,\ 4,\ 3,\ 2,\ 1,\ 1,\ 2,\ 3,\ 4,\ 5,\ 4,\ 3,\ 2,\ 1,\ \cdots,\ 1,\ 2,\ 3,\ \cdots,\ n-2,\ n-1,\ n,\ n-1,\ \cdots,\ 3,\ 2,\ 1,\ 1,\ 2,\ 3,\ \cdots$
ここで,$a_1=1$だけからなる群を第$1$群,$a_2=1,\ a_3=2,\ a_4=1$からなる群を第$2$群と呼ぶことにする.一般に,$1,\ 2,\ 3,\ 4,\ \cdots,\ k-1,\ k,\ k-1,\ \cdots,\ 3,\ 2,\ 1$からなる群を第$k$群と呼ぶことにする.
このとき,以下の問いに答えなさい.
(1)第$n$群の項数を$n$を用いて表せば$[タ]$個となる.
(2)第$n$群に属する項すべての整数の和を$n$を用いて表せば$[チ]$となる.
(3)整数$7$が,数列$\{a_n\}$の初項から「第$n$群に含まれる最後の項」までの間に現れる回数を$n$を用いて表せば$[ツ]$回となる.ただし,$n$は$7$以上の自然数とする.
(4)数列$\{a_n\}$の第$364$項は第$[テ]$群に属し,その第$[テ]$群の先頭から$[ト]$番目の項である.
横浜市立大学 公立 横浜市立大学 2013年 第1問
以下の問いに答えよ.

(1)$a,\ b,\ c$を実数として,$A,\ B,\ C$を
\[ A=a+b+c,\quad B=a^2+b^2+c^2,\quad C=a^3+b^3+c^3 \]
とおく.このとき$abc$を$A,\ B,\ C$を用いて表せ.
(2)$n$を自然数とする.このとき
\[ \sum_{k=0}^{n-1} \frac{\comb{2n}{2k+1}}{2k+2} \]
を求めよ.
(3)ボタンを押すと$\mathrm{X}$,$\mathrm{Y}$,$\mathrm{Z}$いずれかの文字が画面に表示される機械がある.その機械では,$\mathrm{X}$と$\mathrm{Y}$が表示される確率は,等しくかつ$\mathrm{Z}$が表示される確率の$2$倍である,とする.いま,ボタンを$5$回続けて押す.このとき,($\mathrm{XYZYX}$のように)$\mathrm{X}$,$\mathrm{Y}$,$\mathrm{Z}$すべての文字が少なくとも$1$回表示される確率を求めよ.
(4)逆行列をもつ$2$次の正方行列$A$が表す$1$次変換が,円$C:(x-1)^2+(y-\sqrt{3})^2=3^2$上の点を$C$上の点に移すとき,$A$を求めよ.ただし,$A$は単位行列と異なる行列とする.
(5)定積分
\[ \int_0^{\frac{\pi}{2}} \frac{\sqrt{2}}{\sin x+\cos x} \, dx \]
を求めよ.
横浜市立大学 公立 横浜市立大学 2013年 第2問
$n$個のボールと,$1$から$n$までの番号がふられた$n$個の空の箱がある.また,$1$から$n$の番号が書かれた$n$枚のカードが袋の中に入っている.いま,以下の手順に従いボールを箱の中に入れていくことを考える.

手順$1$ \quad 袋からカードを$1$枚無作為に取り出して,手順$2$に進む.
手順$2$ \quad 手順$1$で取り出したカードに書かれている番号の箱が,
\begin{itemize}
空ならば,そこにボールを$1$つ入れて,手順$3$へ進む.
空でなければ,カードを袋に戻さず手元に置き,手順$1$に戻る.
\end{itemize}
手順$3$ \quad 手元のすべてのカードを袋に戻す.この時点で,
\begin{itemize}
すべての箱にボールが入っていれば終了する.
空の箱が$1$つでもあれば,手順$1$に戻る.
\end{itemize}

また,$1 \leqq k \leqq n$を満たす自然数$k$について,$k-1$個目のボールを箱に入れ終わった状態(ただし,$k=1$のときは,はじめの状態とする)の後に,
\begin{itemize}
次のボール,すなわち$k$個目のボールを箱に入れるまでにちょうど$i$枚のカードを袋から取り出す確率を$P_k(i)$とし,
$i$枚のカードを袋から取り出してもまだ次のボールを箱に入れることができない確率を$Q_k(i)$とする.ただし,$Q_k(0)=1$とする.
\end{itemize}
このとき,以下の問いに答えよ.

(1)$n=4$のとき$P_3(1)$,$P_3(2)$,$Q_3(2)$をそれぞれ求めよ.
(2)$Q_k(i)$を$P_k(i+1)$,$P_k(i+2)$,$\cdots$,$P_k(k)$を用いて表せ.ただし,$0 \leqq i \leqq k-1$とする.
(3)$k-1$個目のボールを箱に入れてから$k$個目のボールを箱に入れるまでに袋から取り出すカードの枚数の期待値$E_k$は$Q_k(0)+Q_k(1)+\cdots +Q_k(k-1)$であることを示せ.
(4)不等式
\[ E_k \leqq \frac{n}{n-k+1} \]
が成り立つことを示せ.
(5)不等式
\[ E_1+E_2+\cdots +E_n \leqq n+n \log n \]
が成り立つことを示せ.
スポンサーリンク

「自然数」とは・・・

 まだこのタグの説明は執筆されていません。