タグ「自然数」の検索結果

46ページ目:全1172問中451問~460問を表示)
京都教育大学 国立 京都教育大学 2014年 第1問
自然数$n$に関する次の条件$p,\ q$を考える.

$p:n^2+3$は偶数である.
$q:n$は奇数である.


(1)命題「$p \Longrightarrow q$」の逆,対偶および裏を述べよ.
(2)命題「$p \Longrightarrow q$」を証明せよ.
福島大学 国立 福島大学 2014年 第4問
次のように定義される数列$\{a_n\}$について,以下の問いに答えなさい.
\[ a_1=2,\quad a_{n+1}=\frac{2{a_n}^3+1}{3{a_n}^2} \]

(1)$a_2$を求めなさい.
(2)任意の自然数$n$について$a_n>1$が成り立つことを数学的帰納法を用いて示しなさい.
(3)任意の自然数$n$について$a_n>a_{n+1}$が成り立つことを示しなさい.
信州大学 国立 信州大学 2014年 第2問
次の各問いに答えよ.

(1)$3$つのベクトル$\overrightarrow{a}=(2,\ 1,\ 1)$,$\overrightarrow{b}=(2,\ s,\ t)$,$\overrightarrow{c}=(p,\ q,\ 2)$が次の条件をみたすような,$s,\ t,\ p,\ q$の値を求めよ.

(i) $|\overrightarrow{a}|=|\overrightarrow{b}|$
(ii) $\overrightarrow{a}$と$\overrightarrow{b}$のなす角は$60^\circ$
(iii) $\overrightarrow{c}$は$\overrightarrow{a}$と$\overrightarrow{b}$の両方に直交する.

(2)$n$を$0$以上の整数とする.$n+1$個の自然数$2^0,\ 2^1,\ \cdots,\ 2^n$の中に,最上位の桁の数字が$1$であるものはいくつあるか.ただし,$x$を超えない最大の整数を表す記号$[x]$を用いて解答してよい.

注:例えば$2014$の最上位の桁の数字は$2$であり,$14225$の最上位の桁の数字は$1$である.
信州大学 国立 信州大学 2014年 第3問
次の各問いに答えよ.

(1)$3$つのベクトル$\overrightarrow{a}=(2,\ 1,\ 1)$,$\overrightarrow{b}=(2,\ s,\ t)$,$\overrightarrow{c}=(p,\ q,\ 2)$が次の条件をみたすような,$s,\ t,\ p,\ q$の値を求めよ.

(i) $|\overrightarrow{a}|=|\overrightarrow{b}|$
(ii) $\overrightarrow{a}$と$\overrightarrow{b}$のなす角は$60^\circ$
(iii) $\overrightarrow{c}$は$\overrightarrow{a}$と$\overrightarrow{b}$の両方に直交する.

(2)$n$を$0$以上の整数とする.$n+1$個の自然数$2^0,\ 2^1,\ \cdots,\ 2^n$の中に,最上位の桁の数字が$1$であるものはいくつあるか.ただし,$x$を超えない最大の整数を表す記号$[x]$を用いて解答してよい.

注:例えば$2014$の最上位の桁の数字は$2$であり,$14225$の最上位の桁の数字は$1$である.
慶應義塾大学 私立 慶應義塾大学 2014年 第1問
以下の文章の空欄に適切な数または式を入れて文章を完成させなさい.

(1)$1$から$13$までの整数が$1$つずつ書かれた$13$枚のカードの中から$3$枚を選ぶとき,偶数が書かれたカードが$2$枚以上含まれる選び方は$[あ]$通りであり,$11$以上の数が書かれたカードが少なくとも$1$枚含まれる選び方は$[い]$通りである.
(2)$\alpha=2+\sqrt{5}$とするとき,$\alpha$を解とし,整数を係数とする$2$次方程式$x^2+a_1x+b_1=0$を求めると$a_1=[う]$,$b_1=[え]$である.また自然数$n$に対して,$\alpha^n$を解とし,整数を係数とする$2$次方程式を$x^2+a_nx+b_n=0$とすると,$b_n=[お]$であり,$a_n^2+a_{2n}=[か]$である.
(3)実数$m$に対して
\[ A(m)=\int_0^1 x(e^x-m)^2 \, dx \]
とおくと,関数$A(m)$は$m=[き]$のとき最小値$[く]$をとる.
慶應義塾大学 私立 慶應義塾大学 2014年 第1問
次の問いに答えよ.

(1)実数$x$の関数$f(x)=x^3-ax^2+bx+4b-2$は,$\displaystyle \lim_{x \to 4} \frac{f(x)}{x-2}=-5$を満たす.ただし,$a,\ b$は実数とする.このとき,

(i) $b$を$a$の式で表すと,$b=[$1$]a-[$2$]$である.
(ii) $x$の値が$3$から$6$まで変化するときの関数$f(x)$の平均変化率が,関数$f(x)$の$x=2+\sqrt{7}$における微分係数に等しいとき,$a=[$3$]$,$b=[$4$]$である.

(2)実数$a$についての方程式
\[ A=|2a+\displaystyle\frac{4|{3}k}+|a-\displaystyle\frac{8|{9}k} \]
において,$\displaystyle a=\frac{1}{4}$のとき$\displaystyle A=\frac{21}{4}$である.ただし,$k$は正の実数の定数とする.このとき,

(i) $\displaystyle k=\frac{[$5$]}{[$6$]}$である.
(ii) $A$の最小値は$\displaystyle \frac{[$7$]}{[$8$]}$であり,このときの$a$の値は$\displaystyle \frac{[$9$][$10$]}{[$11$]}$である.

(3)$n$を自然数とする.数列$\{a_n\}$は,$a_1=5$,$\displaystyle a_{n+1}=\frac{25}{{a_n}^2}$を満たす.このとき,

(i) $a_3=[$12$][$13$]$,$\displaystyle a_4=\frac{[$14$]}{[$15$][$16$]}$である.
(ii) $b_n=\log_5 a_n$とおくとき,数列$\{b_n\}$の一般項を$n$の式で表すと,
\[ b_n=\frac{\left( [$17$][$18$] \right)^{n-1}}{[$19$]}+\frac{[$20$]}{[$21$]} \]
である.

(4)円に内接する四角形$\mathrm{ABCD}$において,$\angle \mathrm{BCD}=60^\circ$,$\mathrm{CD}=2 \sqrt{6}$,$\angle \mathrm{DAB}>\angle \mathrm{CDA}$である.また$2$直線$\mathrm{BA}$,$\mathrm{CD}$の交点を$\mathrm{E}$,$2$直線$\mathrm{DA}$,$\mathrm{CB}$の交点を$\mathrm{F}$とすると,$\angle \mathrm{AFB}=45^\circ$,$\mathrm{DE}=3 \sqrt{2}-\sqrt{6}$である.このとき,

(i) $\angle \mathrm{AED}$の大きさは${[$22$][$23$]}^\circ$であり,辺$\mathrm{EB}$の長さは$[$24$]$である.

(ii) 三角形$\mathrm{AED}$の面積は,三角形$\mathrm{CEB}$の面積の$\displaystyle \frac{[$25$]-\sqrt{[$26$]}}{[$27$]}$倍である.

(5)$xy$平面上に放物線$C:2x^2+(k-5)x-(k+1)y+6k-14=0$と直線$\displaystyle \ell:y=\frac{1}{2}x$がある.$k$は$k \neq -1$を満たす実数とする.放物線$C$は$-1$を除くすべての実数$k$に対して$2$定点$\mathrm{A}(x_\mathrm{A},\ y_\mathrm{A})$,$\mathrm{B}(x_\mathrm{B},\ y_\mathrm{B})$を通る.ただし,$x_\mathrm{A}<x_\mathrm{B}$とする.このとき,

(i) $2$点$\mathrm{A}$,$\mathrm{B}$の座標は
\[ (x_\mathrm{A},\ y_\mathrm{A})=\left( [$28$][$29$],\ [$30$] \right),\quad (x_\mathrm{B},\ y_\mathrm{B})=\left( [$31$],\ [$32$][$33$] \right) \]
である.
(ii) 直線$\ell$上に点$\mathrm{P}$をおき,$2$点$\mathrm{A}$,$\mathrm{B}$をそれぞれ点$\mathrm{P}$と線分で結ぶとき,距離の和$\mathrm{AP}+\mathrm{BP}$を最小にする点$\mathrm{P}$の座標は$\displaystyle \left( \frac{[$34$][$35$]}{[$36$]},\ \frac{[$37$][$38$]}{[$39$]} \right)$である.
慶應義塾大学 私立 慶應義塾大学 2014年 第2問
以下の文章の空欄に適切な数または式を入れて文章を完成させなさい.

数直線上の座標$1,\ 2,\ 3$で表される位置に置かれた点に対する次の操作$\mathrm{T}$を考える.
\begin{screen}
操作$\mathrm{T}$

\mon[$(\mathrm{a})$] 点が$1$または$2$の位置に置かれている場合は確率$\displaystyle \frac{3}{4}$でそのままにしておき,確率$\displaystyle \frac{1}{4}$で正の方向へ$1$だけ動かす.
\mon[$(\mathrm{b})$] 点が$3$の位置に置かれている場合は確率$\displaystyle \frac{3}{4}$でそのままにしておき,確率$\displaystyle \frac{1}{4}$で負の方向へ$1$だけ動かす.

\end{screen}
以下,$n$を自然数とする.


(1)$1$の位置に置かれている点$\mathrm{A}$に対し,操作$\mathrm{T}$を$n$回繰り返し行った時点で,点$\mathrm{A}$が$1$の位置に置かれている確率を$p_n$,$2$の位置に置かれている確率を$q_n$とすると,$p_n=[あ]$,$q_n=[い]$である.
(2)$2$の位置に置かれている点$\mathrm{B}$に対し,操作$\mathrm{T}$を$n$回繰り返し行った時点で,点$\mathrm{B}$が$2$の位置に置かれている確率を$q_n^\prime$とすると,$q_n^\prime=[う]$である.
(3)$2$点$\mathrm{C}$,$\mathrm{D}$がともに$1$の位置に置かれているとする.はじめに$\mathrm{K}$君が点$\mathrm{C}$に対し操作$\mathrm{T}$を繰り返し行うとし,点$\mathrm{C}$が$1$の位置を離れた次の回からは$\mathrm{O}$君が加わって,$\mathrm{K}$君が点$\mathrm{C}$に対し操作$\mathrm{T}$を繰り返し行うのと同時に,$\mathrm{K}$君とは独立に,$\mathrm{O}$君が点$\mathrm{D}$に対し操作$\mathrm{T}$を繰り返し行うとする.

$(3-1)$ $\mathrm{K}$君が点$\mathrm{C}$に対し操作$\mathrm{T}$を$n$回繰り返し行った時点で,$2$点$\mathrm{C}$,$\mathrm{D}$がともに$2$の位置に置かれている確率を$r_n$とすると$r_1=0$,$r_2=[え]$であり,一般に$n \geqq 2$に対して$r_n=[お]$である.
$(3-2)$ $\mathrm{K}$君が点$\mathrm{C}$に対し操作$\mathrm{T}$を$n$回繰り返し行った時点で,$2$点$\mathrm{C}$,$\mathrm{D}$がどちらも$2$の位置に置かれていない確率を$s_n$とすると$s_1=[か]$である.また一般に$n \geqq 2$に対して$s_n-r_n=[き]$である.
慶應義塾大学 私立 慶應義塾大学 2014年 第4問
以下の文章の空欄に適切な数または式を入れて文章を完成させなさい.

三角形$\mathrm{ABC}$において$\mathrm{AB}=\mathrm{AC}=1$,$\angle \mathrm{BAC}=2\theta$とする.

(1)三角形$\mathrm{ABC}$の内接円$C_1$の半径を$R_1(\theta)$とする.$R_1(\theta)$を$\theta$の式で表すと$R_1(\theta)=[あ]$である.また$\theta$を$\displaystyle 0<\theta<\frac{\pi}{2}$の範囲で変化させるときに$R_1(\theta)$が最大値をとるような$\theta$の値を$\theta_1$とすると
\[ \sum_{k=1}^\infty \sin^k \theta_1=[い] \]
が成り立つ.
(2)三角形$\mathrm{ABC}$の内側に次のように円$C_2$,$C_3$,$\cdots$,$C_n$,$\cdots$を作る.円$C_1$の外側にあって円$C_1$および辺$\mathrm{AB}$,$\mathrm{AC}$に同時に接する円を$C_2$とし,円$C_1$,$C_2$の外側にあって円$C_2$および辺$\mathrm{AB}$,$\mathrm{AC}$に同時に接する円を$C_3$とする.以下同様に自然数$n \geqq 2$に対して,円$C_1$,$C_2$,$\cdots$,$C_{n-1}$の外側にあって円$C_{n-1}$および辺$\mathrm{AB}$,$\mathrm{AC}$に同時に接する円を$C_n$とする.$C_n$の半径$R_n(\theta)$を$\theta$と$n$の式で表すと$R_n(\theta)=[う]$である.
(3)$x$の$2$次式$g_n(x)=[え]$に対して
\[ \frac{d}{d\theta}\log R_n(\theta)=-\frac{g_n(\sin \theta)}{\sin \theta \cos \theta} \]
が成り立つ.また$\theta$を$\displaystyle 0<\theta<\frac{\pi}{2}$の範囲で変化させるときに$R_n (\theta)$が最大値をとるような$\theta$の値を$\theta_n$とすると$\sin \theta_n=[お]$である.
(4)$\displaystyle \lim_{n \to \infty} n \sin \theta_n=[か]$である.このことから,$\theta=\theta_n$のときの円$C_n$の面積$S_n$に対して$\displaystyle \lim_{n \to \infty}n^2S_n=[き]$が成り立つ.
慶應義塾大学 私立 慶應義塾大学 2014年 第3問
次の問いに答えよ.

(1)$1$から$15$までの自然数全体からなる集合$\{1,\ 2,\ \cdots,\ 15\}$の部分集合で,$10$個の要素からなり,すべての要素の和が$56$以上になるものは全部で$\kakkofour{$30$}{$31$}{$32$}{$33$}$個ある.
(2)女子$7$人と男子$4$人がいる.その中から$3$人を選び,$3$個の異なるお菓子を$1$人に$1$個ずつ与える.ただし,$2$人以上の女子を選ばなければならないとすると,与える方法は$[$34$][$35$][$36$]$通りである.
慶應義塾大学 私立 慶應義塾大学 2014年 第3問
$a_1=0$,$a_{n+1}=\log (a_n+e) (n=1,\ 2,\ 3,\ \cdots)$で定まる数列$\{a_n\}$の収束について調べたい.以下の問いに答えなさい.

(1)方程式$x=\log (x+e)$は$x>0$の範囲でただ$1$つの実数解$\beta$をもつことを証明しなさい.
(2)すべての自然数$n$について$0 \leqq a_n<\beta$が成り立つことを証明しなさい.
(3)$0<a<b$のとき$\displaystyle \log b-\log a<\frac{b-a}{a}$が成り立つことを証明しなさい.
(4)すべての自然数$n$について$\displaystyle \beta-a_{n+1}<\frac{1}{e}(\beta-a_n)$が成り立つことを証明し,これを用いて$\displaystyle \lim_{n \to \infty}a_n=\beta$を示しなさい.
スポンサーリンク

「自然数」とは・・・

 まだこのタグの説明は執筆されていません。