タグ「自然数」の検索結果

31ページ目:全1172問中301問~310問を表示)
広島経済大学 私立 広島経済大学 2015年 第1問
次の各問の空欄に当てはまる最も適切な数値を記入せよ.

(1)$18(2n-4) \leqq 48n-400$を満たす最小の自然数$n$は$n=[$1$]$である.
(2)$\sqrt{10}$の整数部分を$a$,小数部分を$b$とする.このとき,


$a=[$2$]$,$b=\sqrt{[$3$]}-[$4$]$であり

$\displaystyle \frac{a}{b}=[$5$] \sqrt{[$6$]}+[$7$]$である.


(3)次の式を計算せよ.
\[ \frac{\sqrt{5}+\sqrt{3}}{\sqrt{15}-\sqrt{3}}-\frac{\sqrt{5}-\sqrt{3}}{\sqrt{15}+\sqrt{3}}=\frac{\sqrt{[$8$]}+[$9$] \sqrt{[$10$]}}{[$11$]} \]
(4)$720$の正の約数の個数は$[$12$]$個である.
広島経済大学 私立 広島経済大学 2015年 第5問
次の各問の空欄に当てはまる最も適切な数値を記入せよ.

(1)$n$を自然数とする.$\displaystyle \sqrt{\frac{540}{n}}$は$n=[$48$]$のとき最大の自然数$[$49$]$になる.

(2)積が$640$,最大公約数が$8$である$2$つの自然数の和は$[$50$]$または$[$51$]$である.但し$[$50$]<[$51$]$とする.
(3)$3x+7y=49$を満たす自然数$x$と$y$の組$(x,\ y)$は$([$52$],\ [$53$])$と$([$54$],\ [$55$])$である.但し$[$52$]<[$54$]$とする.
(4)$3$進数$1221_{(3)}$を$10$進数で表すと$[$56$]$である.また,$3$進数$0.1221_{(3)}$を$10$進数で表すと$\displaystyle \frac{[$57$]}{[$58$]}$である.
東京都市大学 私立 東京都市大学 2015年 第1問
次の$[ ]$を埋めよ.

(1)$\log_2 104+\log_2 (27+2+2)-\log_2(2015 \times 2 \div 10)$の値は$[ア]$である.
(2)実数$x,\ y$が等式$(2+xi)(5+i)=3y-8i$を満たすとき,$x=[イ]$,$y=[ウ]$である.ただし,$i$は虚数単位とする.
(3)整式$P(x)=x^4$を$x-2$で割ると商が$[エ]$,余りが$[オ]$となる.$P(x)$を$(x-2)^2$で割ると商が$[カ]$,余りが$[キ]$となる.
(4)$3$次方程式$\displaystyle \frac{2}{3}x^3-ax^2+a=0$が異なる$3$個の実数解をもつとき,実数の定数$a$の値の範囲は$[ク]$である.
(5)自然数$n$に対して$a_n=2^{-n}$,$\displaystyle b_n=\int_{a_{n+1}}^{a_n} x \, dx$,$\displaystyle c_n=\sum_{k=1}^n b_k$と定義する.$b_n$を$n$の式で表すと$b_n=[ケ]$となるので,数列$\{b_n\}$は初項$[コ]$,公比$[サ]$の等比数列といえる.また,$c_n$を$n$の式で表すと$c_n=[シ]$となるので,数列$\{c_n\}$の和$\displaystyle S_n=\sum_{k=1}^n c_k$を$n$の式で表すと$\displaystyle S_n=[ス]$となる.
(6)$1$個のさいころを$4$回続けて投げるとする.$4$回とも同じ目が出る確率は$[セ]$であり,$1$から$4$までの目がそれぞれ$1$回ずつ出る確率は$[ソ]$である.また,出る目が$1$と$2$の$2$種類になる確率は$[タ]$であり,出る目が$1$から$6$までのいずれか$2$種類になる確率は$[チ]$である.
(7)$3$点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(6,\ 3)$,$\mathrm{B}(2,\ 4)$を頂点とする$\triangle \mathrm{OAB}$に対し,$\overrightarrow{\mathrm{OP}}=s \overrightarrow{\mathrm{OA}}+t \overrightarrow{\mathrm{OB}}$とする.実数$s,\ t$が条件$\displaystyle 0 \leqq s+t \leqq \frac{1}{2}$,$s \geqq 0$,$t \geqq 0$を満たしながら動くとき,点$\mathrm{P}$の存在範囲が$\triangle \mathrm{OA}^\prime \mathrm{B}^\prime$の周および内部であるとすると,点$\mathrm{A}^\prime$の座標は$[ツ]$,点$\mathrm{B}^\prime$の座標は$[テ]$である.ただし,点$\mathrm{A}^\prime$は直線$\mathrm{OA}$上,点$\mathrm{B}^\prime$は直線$\mathrm{OB}$上にあるものとする.また,$3$点$\mathrm{O}(0,\ 0)$,$\displaystyle \mathrm{C} \left( 9,\ \frac{9}{2} \right)$,$\mathrm{D}(3,\ 6)$を頂点とする$\triangle \mathrm{OCD}$に対し,$\overrightarrow{\mathrm{OQ}}=s^\prime \overrightarrow{\mathrm{OC}}+t^\prime \overrightarrow{\mathrm{OD}}$とする.点$\mathrm{Q}$の存在範囲が点$\mathrm{P}$の存在範囲と一致するとき,実数$s^\prime$と$t^\prime$の満たす条件は$[ト]$である.
(8)絶対値の記号を用いずに関数$f(x)=|3x^2-3x|-1$を表すと,$0 \leqq x \leqq 1$のとき$f(x)=[ナ]$となり,$x \leqq 0$,$1 \leqq x$のとき$f(x)=[ニ]$となる.したがって,定積分$\displaystyle \int_0^a f(x) \, dx$の値は,$0 \leqq a \leqq 1$のとき$[ヌ]$,$1 \leqq a$のとき$[ネ]$となる.
大阪工業大学 私立 大阪工業大学 2015年 第3問
数列$\{a_n\}$を$\displaystyle a_1=\frac{1}{2}$,$\displaystyle a_{n+1}=\frac{ka_n}{1+3a_n} (n=1,\ 2,\ 3,\ \cdots)$で定める.ただし,$k$は正の定数とする.このとき,次の空所を埋めよ.

(1)$k=1$のとき,$\displaystyle b_n=\frac{1}{a_n}$とおくと,数列$\{b_n\}$は初項$[ア]$,公差$[イ]$の等差数列となり,数列$\{a_n\}$の一般項は,$a_n=[ウ] (n=1,\ 2,\ 3,\ \cdots)$である.
(2)$k \neq 1$のとき,$\displaystyle c_n=\frac{1}{a_n}-\frac{3}{k-1}$とおくと,数列$\{c_n\}$は初項$[エ]$,公比$[オ]$の等比数列となり,数列$\{a_n\}$の一般項は,$\displaystyle a_n=\frac{k-1}{3+[カ]} (n=1,\ 2,\ 3,\ \cdots)$である.
特に,$k=[キ]$のとき,すべての自然数$n$について$a_n$は一定の値である.
広島経済大学 私立 広島経済大学 2015年 第5問
次の各問の空欄に当てはまる最も適切な数値を記入せよ.

(1)$n$を自然数とする.$\sqrt{504n}$は$n=[$39$]$のとき最小の自然数$[$40$]$になる.
(2)和が$80$,最大公約数が$16$である$2$つの自然数の差は$[$41$]$または$[$42$]$である.但し$[$41$]<[$42$]$とする.
(3)$9$で割ると$2$余り$8$で割ると$3$余る自然数$n$のうち,$10 \leqq n \leqq 100$を満たす$n$は$[$43$]$と$[$44$]$である.但し$[$43$]<[$44$]$とする.
(4)$112,\ 211,\ 409$のいずれを割っても余りが$13$となる自然数のうち,最大の自然数は$[$45$]$であり,最小の自然数は$[$46$]$である.
中部大学 私立 中部大学 2015年 第4問
次の問いに答えよ.

(1)すべての自然数$k$に対して,
\[ \frac{2k+6}{k^3+3k^2+2k}=\frac{a}{k}+\frac{b}{k+1}+\frac{c}{k+2} \]
が成り立つように,定数$a,\ b,\ c$の値を決定せよ.
(2)$\displaystyle \sum_{k=1}^n \frac{2k+6}{k^3+3k^2+2k}$を求めよ.
近畿大学 私立 近畿大学 2015年 第2問
自然数からなる数列$\{a_n\}$と$\{b_n\}$を,$a_n+b_n \sqrt{5}={(3+\sqrt{5})}^n$によって定める.

(1)$a_3=[ア][イ],\ b_3=[ウ][エ]$であり,また$a_4=[オ][カ][キ],\ b_4=[ク][ケ][コ]$である.
(2)$a_{n+1}=[サ]a_n+[シ]b_n$であり,また$b_{n+1}=a_n+[ス]b_n$である.ここで$c_n=a_n-b_n \sqrt{5}$とおくと,$c_n={([セ]-\sqrt{[ソ]})}^n$となる.
(3)$b_n$の値が初めて$10000$を超えるのは$n=[タ]$のときである.また,$\displaystyle \frac{c_n}{a_n}$の値が初めて$\displaystyle \frac{1}{10000}$より小さくなるのは$n=[チ]$のときである.
近畿大学 私立 近畿大学 2015年 第2問
自然数からなる数列$\{a_n\}$と$\{b_n\}$を,$a_n+b_n \sqrt{5}={(3+\sqrt{5})}^n$によって定める.

(1)$a_3=[ア][イ],\ b_3=[ウ][エ]$であり,また$a_4=[オ][カ][キ],\ b_4=[ク][ケ][コ]$である.
(2)$a_{n+1}=[サ]a_n+[シ]b_n$であり,また$b_{n+1}=a_n+[ス]b_n$である.ここで$c_n=a_n-b_n \sqrt{5}$とおくと,$c_n={([セ]-\sqrt{[ソ]})}^n$となる.
(3)$b_n$の値が初めて$10000$を超えるのは$n=[タ]$のときである.また,$\displaystyle \frac{c_n}{a_n}$の値が初めて$\displaystyle \frac{1}{10000}$より小さくなるのは$n=[チ]$のときである.
広島文化学園大学 私立 広島文化学園大学 2015年 第1問
次の問いに答えよ.

(1)$(x^2+2x+3)(x^2-2x+3)$を展開せよ.
(2)$x^2-4ax-5a^2$を因数分解せよ.
(3)$\displaystyle x=\frac{1}{\sqrt{3}+2},\ y=\frac{1}{\sqrt{3}-2}$のとき,式$x^2+y^2$の値を求めよ.
(4)$|3x+1| \geqq 2$を解け.
(5)集合$A$を$1$から$12$までの自然数の集合,集合$B$を素数全体の集合とするとき,$A \cap B$の要素を書き並べて表せ.
(6)次の$[ ]$にあてはまるものとして,「必要条件である」,「十分条件である」,「必要十分条件である」,「必要条件でも十分条件でもない」のうち,最も適切なものを選べ.
$x^2=16$は$x=4$であるための$[ ]$.
(7)$\displaystyle \sin \theta=\frac{3}{\sqrt{13}}$であるとき,$\cos^2 \theta-\sin^2 \theta$の値を求めよ.
(8)$\triangle \mathrm{ABC}$において,$\angle \mathrm{A}={135}^\circ$,$\mathrm{AB}=2$,$\mathrm{AC}=\sqrt{2}$のとき,$\mathrm{BC}$を求めよ.
中部大学 私立 中部大学 2015年 第1問
次の$[ア]$から$[ス]$にあてはまる数字または符号を入れよ.

(1)$2$次関数$y=x^2-4x+3$のグラフは,$y=x^2+2x+5$のグラフを$x$軸方向に$[ア]$,$y$軸方向に$[イ][ウ]$平行移動したものである.
(2)$1$から$8$までの自然数の中から異なる$4$個の数を選ぶとき,最大数が$7$以下となるような選び方は$[エ][オ]$通りあり,最大数が$7$となるような選び方は$[カ][キ]$通りある.
(3)方程式$(\log_3 2)(\log_4 \sqrt{x})=\log_x 3$の解は,$\displaystyle x=\frac{[ク]}{[ケ]},\ [コ]$である.
(4)実数$x,\ y$が$3x^2+2y^2=6x$を満たすとき,$x^2+2y^2$の最大値は$\displaystyle \frac{[サ]}{[シ]}$であり,最小値は$[ス]$である.
スポンサーリンク

「自然数」とは・・・

 まだこのタグの説明は執筆されていません。