タグ「考慮」の検索結果

1ページ目:全6問中1問~10問を表示)
慶應義塾大学 私立 慶應義塾大学 2016年 第4問
$i$を虚数単位とする.次の事実がある.
\begin{waku}[事実$\mathrm{F}$]
$a,\ b$を互いに素な正の整数とする.このとき,
\[ \left( \cos \frac{2a}{b} \pi+i \sin \frac{2a}{b} \pi \right)^k=\cos \frac{2}{b} \pi+i \sin \frac{2}{b} \pi \]
となる整数$k$が存在する.
\end{waku}

(1)等式
\[ \left( \cos \frac{4}{5} \pi+i \sin \frac{4}{5} \pi \right)^k=\cos \frac{2}{5} \pi+i \sin \frac{2}{5} \pi \]
を満たす最小の正の整数$k$は$[ツ]$である.
(2)$a,\ b$を互いに素な正の整数とし,集合$P$を
\[ P=\left\{ z \;\bigg|\; \text{$z$は整数$k$を用いて} \left( \cos \frac{2a}{b} \pi+i \sin \frac{2a}{b} \pi \right)^k \text{と表される複素数} \right\} \]
で定める.事実$\mathrm{F}$を考慮すると,集合$P$の要素の個数$n(P)$は$[テ]$である.
(3)事実$\mathrm{F}$を証明しなさい.
(4)$a_1,\ b_1$を互いに素な正の整数とし,$a_2,\ b_2$も互いに素な正の整数とする.集合$Q_1$と$Q_2$を

$\displaystyle Q_1=\left\{ z \;\bigg|\; \text{$z$は整数$k$を用いて} \left( \cos \frac{2a_1}{b_1} \pi+i \sin \frac{2a_1}{b_1} \pi \right)^k \text{と表される複素数} \right\}$

$\displaystyle Q_2=\left\{ z \;\bigg|\; \text{$z$は整数$k$を用いて} \left( \cos \frac{2a_2}{b_2} \pi+i \sin \frac{2a_2}{b_2} \pi \right)^k \text{と表される複素数} \right\}$

で定め,集合$R$を
\[ R=\{z \;\bigg|\; \text{$z$は集合$Q_1$の要素と集合$Q_2$の要素の積で表される複素数}\} \]
で定める.$b_1$と$b_2$が互いに素ならば,集合$R$の要素の個数$n(R)$は$[ト]$である.$b_1$と$b_2$が互いに素でないとき,それらの最大公約数を$d$とすれば,集合$R$の要素の個数$n(R)$は$[ナ]$である.
東洋大学 私立 東洋大学 2016年 第2問
厚さ$1 \, \mathrm{cm}$のアクリル板で半球形の容器を作るとき,アクリル板の強度を考慮すると,最大で$50 \, l$の容積をもつ容器を作ることができるものとする.このアクリル板の厚さを$1 \, \mathrm{cm}$増やすごとに,作れる容器の最大の容積は$1.3$倍になる.一方,このアクリル板は,厚さ$1 \, \mathrm{cm}$のときに光の透過率が$90 \, \%$で,厚さを$1 \, \mathrm{cm}$増やすごとに透過率は$0.9$倍になる.次の各問に答えよ.ただし,アクリル板は$1 \, \mathrm{cm}$単位の加工しかできないこととし,必要ならば$\log_{10}2=0.3010$,$\log_{10}3=0.4771$を用いてもよい.

(1)アクリル板の厚さを$2 \, \mathrm{cm}$としたとき,その透過率は$[アイ] \, \%$になる.
(2)アクリル板の厚さを$2 \, \mathrm{cm}$としたとき,容器の容積は最大で$[ウエ] \, l$になる.
(3)アクリル板の透過率を$50 \, \%$以上としながら,容積の最も大きな容器を作りたい.このとき,アクリル板の厚さを$[オ] \, \mathrm{cm}$とすればよく,その容器の容積は,小数第$1$位を切り捨てて$[カキク] \, l$である.
島根大学 国立 島根大学 2012年 第1問
次の問いに答えよ.

(1)$2$または$3$を,順序を考慮して合計$n$になるまで加える方法が何通りあるかを考える.たとえば,$n=5$のときは$2+3,\ 3+2$の$2$通りあり,$n=6$のときは$2+2+2,\ 3+3$の$2$通りある.$n=15$のときに何通りあるかを答えよ.
(2)硬貨を投げ,表が出れば$2$,裏が出れば$3$を加えるものとする.$0$からはじめて合計が$15$以上になるまで硬貨投げを繰り返すとき,合計が$15$になる確率を求めよ.
島根大学 国立 島根大学 2012年 第1問
次の問いに答えよ.

(1)$2$または$3$を,順序を考慮して合計$n$になるまで加える方法が何通りあるかを考える.たとえば,$n=5$のときは$2+3,\ 3+2$の$2$通りあり,$n=6$のときは$2+2+2,\ 3+3$の$2$通りある.$n=15$のときに何通りあるかを答えよ.
(2)硬貨を投げ,表が出れば$2$,裏が出れば$3$を加えるものとする.$0$からはじめて合計が$15$以上になるまで硬貨投げを繰り返すとき,合計が$15$になる確率を求めよ.
中央大学 私立 中央大学 2012年 第3問
$h>0,\ d \geqq 0$とし,座標空間において$4$点$\mathrm{A}(0,\ 0,\ 1)$,$\mathrm{B}(0,\ 0,\ -1)$,$\mathrm{C}(h,\ 0,\ -d)$,$\mathrm{D}(0,\ h,\ d)$を頂点とする四面体を考える.さらに$\mathrm{CD}=2$とする.したがって,四面体の$6$本の辺のうち向かい合う$2$辺の長さは$3$組とも互いに等しい.つまり
\[ \mathrm{AB}=\mathrm{CD},\quad \mathrm{AC}=\mathrm{BD},\quad \mathrm{AD}=\mathrm{BC} \]
となっており,$4$つの面はすべて互いに合同である.この四面体$\mathrm{ABCD}$について以下の問いに答えよ.

(1)$h$を$d$で表し,$d$のとりうる値の範囲を求めよ.

点$\mathrm{A}$を通り平面$\mathrm{BCD}$に垂直な直線と平面$\mathrm{BCD}$の交点を$\mathrm{P}$とおく.この点$\mathrm{P}$を点$\mathrm{A}$から平面$\mathrm{BCD}$に下ろした垂線の足とよぶ.同様に,点$\mathrm{B}$から平面$\mathrm{ACD}$に下ろした垂線の足を$\mathrm{Q}$,点$\mathrm{C}$から平面$\mathrm{ABD}$へ下ろした垂線の足を$\mathrm{R}$,点$\mathrm{D}$から平面$\mathrm{ABC}$へ下ろした垂線の足を$\mathrm{S}$とおく.

(2)点$\mathrm{R}$,$\mathrm{S}$は直線$\mathrm{AB}$上にあることに注意して,$\mathrm{R}$,$\mathrm{S}$の座標を$d$で表せ.また,四面体$\mathrm{ABCD}$の対称性を考慮して,点$\mathrm{P}$,$\mathrm{Q}$の座標を$d$で表せ.さらに,計算により$\overrightarrow{\mathrm{AP}} \cdot \overrightarrow{\mathrm{BQ}}=0$を確認せよ.
(3)辺$\mathrm{BD}$の長さのとりうる値の範囲を求めよ.
(4)平面$\mathrm{ABC}$と平面$\mathrm{ACD}$が直線$\mathrm{AC}$に沿って角度$\displaystyle \theta \left( 0 \leqq \theta \leqq \frac{\pi}{2} \right)$で交わっている.$\theta$のとりうる値の範囲を求めよ.ただし$2$平面の交わる角度とは,それぞれの平面に直交する$2$直線のなす角度である.
豊橋技術科学大学 国立 豊橋技術科学大学 2011年 第4問
別々に製造される部品$\mathrm{A}$と部品$\mathrm{B}$を$1$個ずつ組み合わせて製造する製品がある.製品の不良は各部品の不良のみに由来し,部品$\mathrm{A}$に不良が生じる確率は$\displaystyle \frac{1}{9}$,部品$\mathrm{B}$に不良が生じる確率は$\displaystyle \frac{1}{4}$である.製品を製造した後,検査するまで各部品が不良であるかどうかは分からないとする.以下の問いに答えよ.

(1)合格品(不良が無い製品)が製造される確率を求めよ.
(2)製品を$5$個製造した後,検査を行ったとき,$4$個以上が合格品である確率を求めよ.
(3)この製品$1$個の販売価格は$1,200$円である.また,部品$\mathrm{A}$の$1$個あたりの製造費用は$300$円であり,部品$\mathrm{B}$の$1$個あたりの製造費用は$100$円である.製品$1$個あたりの利益は,以下の式で計算される.

(製品$1$個あたりの利益)$=$(販売価格)$-$(製品$1$個あたりの費用)

製品$1$個あたりの費用が部品$\mathrm{A}$と$\mathrm{B}$の製造費用のみと考えてよいとき,製品$1$個あたりの利益の期待値を求めよ.なお,不良品(不良のある製品)は販売しないため,上式の(販売価格)項が$0$となり負の利益(損失)が生じることを考慮せよ.
(4)新たに工作機械を導入することで,部品$\mathrm{B}$に不良が生じる確率を$\displaystyle \frac{1}{8}$にすることができる.しかし,この工作機械の導入費用として$500,000$円が必要であり,これに加えて部品$\mathrm{B}$の$1$個あたりの製造費用は$100$円増加する.$10,000$個製品を製造するとき,工作機械を導入する場合としない場合でどちらが有利か,工作機械を導入する場合の製品$1$個あたりの利益の期待値を示した上で判定せよ.ただし,工作機械の導入費用は$10,000$個の製品の製造でまかなうものとする.また,販売価格および部品$\mathrm{A}$の製造費用は(3)と同じとする.
スポンサーリンク

「考慮」とは・・・

 まだこのタグの説明は執筆されていません。