タグ「線分」の検索結果

4ページ目:全1074問中31問~40問を表示)
筑波大学 国立 筑波大学 2016年 第5問
$\triangle \mathrm{PQR}$において$\angle \mathrm{RPQ}=\theta$,$\displaystyle \angle \mathrm{PQR}=\frac{\pi}{2}$とする.点$\mathrm{P}_n (n=1,\ 2,\ 3,\ \cdots)$を次で定める.
\[ \mathrm{P}_1=\mathrm{P},\quad \mathrm{P}_2=\mathrm{Q},\quad \mathrm{P}_n \mathrm{P}_{n+2}=\mathrm{P}_n \mathrm{P}_{n+1} \]
ただし,点$\mathrm{P}_{n+2}$は線分$\mathrm{P}_n \mathrm{R}$上にあるものとする.実数$\theta_n (n=1,\ 2,\ 3,\ \cdots)$を
\[ \theta_n=\angle \mathrm{P}_{n+1} \mathrm{P}_n \mathrm{P}_{n+2} \quad (0<\theta_n<\pi) \]
で定める.

(1)$\theta_2,\ \theta_3$を$\theta$を用いて表せ.
(2)$\displaystyle \theta_{n+1}+\frac{\theta_n}{2} (n=1,\ 2,\ 3,\ \cdots)$は$n$によらない定数であることを示せ.
(3)$\displaystyle \lim_{n \to \infty} \theta_n$を求めよ.
(図は省略)
信州大学 国立 信州大学 2016年 第5問
$\mathrm{P}_0$,$\mathrm{Q}_0$を複素数平面上の異なる点とする.自然数$k$に対して,平面上の点$\mathrm{P}_k$,$\mathrm{Q}_k$を以下の条件$(ⅰ)$,$(ⅱ)$を満たすものとして定める.

(i) 線分$\mathrm{P}_{k-1} \mathrm{Q}_{k-1}$を$\mathrm{P}_{k-1}$を中心として角$\theta$だけ回転させた線分が$\mathrm{P}_{k-1} \mathrm{Q}_{k}$となる.
(ii) 線分$\mathrm{P}_{k-1} \mathrm{Q}_{k}$を$\mathrm{Q}_{k}$を中心として角$\theta^\prime$だけ回転させた線分が$\mathrm{Q}_{k} \mathrm{P}_{k}$となる.

以下の問いに答えよ.

(1)$\mathrm{Q}_{k+2}=\mathrm{Q}_k$となるための,$\theta$と$\theta^\prime$に関する条件を求めよ.
(2)$0 \leqq \theta<2\pi$,$\theta=-\theta^\prime$,$|\mathrm{Q|_0 \mathrm{P}_0}=1$とする.$\mathrm{Q}_0$を中心とし,半径が$r$の円を$C$とする.$\mathrm{P}_{n-1}$は$C$の内部,$\mathrm{Q}_n$は$C$の外部にあるという.このとき,$r^2$が取り得る値の範囲を$n$と$\theta$を用いて表せ.
岩手大学 国立 岩手大学 2016年 第2問
平行四辺形$\mathrm{ABCD}$において,$\overrightarrow{\mathrm{AB}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{AD}}=\overrightarrow{b}$とおき,
\[ |\overrightarrow{a|}=4,\quad |\overrightarrow{b|}=5,\quad |\overrightarrow{\mathrm{AC|}}=6 \]
であるとする.また,辺$\mathrm{BC}$を$1:4$に内分する点を$\mathrm{E}$,辺$\mathrm{AB}$を$s:(1-s)$に内分する点を$\mathrm{F}$とし(ただし,$0<s<1$),線分$\mathrm{AE}$と線分$\mathrm{DF}$の交点を$\mathrm{P}$とするとき,次の問いに答えよ.

(1)$\overrightarrow{a}$と$\overrightarrow{b}$の内積$\overrightarrow{a} \cdot \overrightarrow{b}$の値を求めよ.
(2)$\overrightarrow{\mathrm{AP}}$を$\overrightarrow{a},\ \overrightarrow{b}$および$s$で表せ.
(3)平行四辺形$\mathrm{ABCD}$の$2$本の対角線$\mathrm{AC}$と$\mathrm{BD}$の交点を$\mathrm{Q}$とする.$\overrightarrow{\mathrm{PQ}}$が$\overrightarrow{b}$と平行であるとき,$s$の値および$|\overrightarrow{\mathrm{AP|}}$の値を求めよ.
東京農工大学 国立 東京農工大学 2016年 第1問
$\mathrm{O}$を原点とする座標空間に$4$点$\mathrm{A}(1,\ -2,\ -2)$,$\mathrm{B}(-1,\ -4,\ 0)$,$\mathrm{C}(2,\ 2,\ -4)$,$\mathrm{D}(2,\ 4,\ -4)$をとる.また,線分$\mathrm{AB}$を$t:(1+t)$に外分する点を$\mathrm{P}$,線分$\mathrm{OB}$を$3:2$に外分する点を$\mathrm{Q}$とおく.ただし,$t$は正の実数とする.次の問いに答えよ.

(1)ベクトル$\overrightarrow{\mathrm{OP}}$の成分を$t$を用いて表せ.
(2)$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{CP}}$が垂直であるとき,$t$の値を求めよ.
(3)実数$r,\ s$について$\overrightarrow{\mathrm{DP}}=r \overrightarrow{\mathrm{DC}}+s \overrightarrow{\mathrm{DQ}}$が成り立つとする.このとき,$r,\ s,\ t$の値を求めよ.
(4)$t$が$(3)$で求めた値のとき,直線$\mathrm{DP}$と直線$\mathrm{CQ}$の交点の座標を求めよ.
(5)$\triangle \mathrm{CDP}$の面積を$S(t)$とする.$S(t)$の最小値を求めよ.また,そのときの$t$の値を求めよ.
千葉大学 国立 千葉大学 2016年 第4問
$-\sqrt{2} \leqq x \leqq \sqrt{2}$の範囲で,点$\mathrm{P}$は放物線$y=-x^2+2$上を動き,点$\mathrm{Q}$は放物線$y=x^2-2$上を動く.ただし,$\mathrm{P}$と$\mathrm{Q}$は異なる点とする.

(1)直線$\mathrm{PQ}$が原点を通るとき,線分$\mathrm{PQ}$の長さの最大値と最小値を求めよ.
(2)線分$\mathrm{PQ}$の長さの最大値を求めよ.
千葉大学 国立 千葉大学 2016年 第3問
$-\sqrt{2} \leqq x \leqq \sqrt{2}$の範囲で,点$\mathrm{P}$は放物線$y=-x^2+2$上を動き,点$\mathrm{Q}$は放物線$y=x^2-2$上を動く.ただし,$\mathrm{P}$と$\mathrm{Q}$は異なる点とする.

(1)直線$\mathrm{PQ}$が原点を通るとき,線分$\mathrm{PQ}$の長さの最大値と最小値を求めよ.
(2)線分$\mathrm{PQ}$の長さの最大値を求めよ.
小樽商科大学 国立 小樽商科大学 2016年 第2問
各辺の長さが$1$の正四面体$\mathrm{OABC}$を考える.辺$\mathrm{OA}$を$2:1$に内分する点を$\mathrm{D}$,辺$\mathrm{BC}$を$2:1$に内分する点を$\mathrm{E}$とする.このとき,線分$\mathrm{DE}$の長さを求めよ.
東京医科歯科大学 国立 東京医科歯科大学 2016年 第3問
座標平面において,実数$x$に対して,$4$点$(x,\ 0)$,$(x+1,\ 0)$,$(x+1,\ 1)$,$(x,\ 1)$を頂点とする正方形で囲まれる領域を$A_x$とし,$A_1 \cap A_x$の面積を$f(x)$とおく.ただし,$A_1 \cap A_x$が空集合あるいは線分のときは,$f(x)=0$とする.このとき以下の各問いに答えよ.

(1)$f(x)$のグラフをかけ.

(2)$\displaystyle g(x)=\int_0^1 f(x-t) \, dt$とおくとき,$\displaystyle g \left( \frac{1}{2} \right)$,$g(2)$を求めよ.

(3)$(2)$の$g(x)$について,$\displaystyle \int_0^3 xg(x) \, dx$を求めよ.
東京農工大学 国立 東京農工大学 2016年 第4問
$xy$平面上の$2$つの曲線

$C_1:y=\log x+2 \quad (x>0)$
$C_2:y=-\log x \quad (x>0)$

を考える.正の実数$p,\ q$について,点$\mathrm{P}(p,\ \log p+2)$における$C_1$の接線を$\ell_1$とし,点$\mathrm{Q}(q,\ -\log q)$における$C_2$の接線を$\ell_2$とする.また,$\ell_1$と$\ell_2$は垂直であるとする.ただし,対数は自然対数とする.次の問いに答えよ.

(1)$q$を$p$を用いて表せ.
(2)$\ell_2$の方程式を$p$を用いて表せ.
(3)$\ell_1$と$\ell_2$の交点を$\mathrm{R}$とする.$\displaystyle \angle \mathrm{RPQ}=\frac{\pi}{3}$であるとき,線分$\mathrm{PQ}$,曲線$C_1$および曲線$C_2$で囲まれた部分の面積$S$を求めよ.
福島大学 国立 福島大学 2016年 第3問
次の問いに答えなさい.

(1)次の極限を求めなさい.
\[ \lim_{n \to \infty} (\sqrt{(n+1)(n+3)}-\sqrt{n(n+2)}) \]
(2)複素数平面上の$2$点$\alpha=4-2i,\ \beta=3-3i$に対して,次の問いに答えなさい.

(i) 点$\alpha$を点$\beta$の周りに${30}^\circ$回転した点を表す複素数$\gamma$を求めなさい.
(ii) $\beta^6$の値を求めなさい.

(3)三角形$\mathrm{ABC}$があり$\mathrm{AB}=5$,$\mathrm{AC}=3$,$\displaystyle \cos \angle \mathrm{BAC}=\frac{1}{3}$とする.点$\mathrm{A}$から辺$\mathrm{BC}$へ下ろした垂線と辺$\mathrm{BC}$の交点を$\mathrm{H}$とする.

(i) ベクトル$\overrightarrow{\mathrm{AH}}$を$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AC}}$を用いて表しなさい.
(ii) 線分$\mathrm{AH}$の長さを求めなさい.
スポンサーリンク

「線分」とは・・・

 まだこのタグの説明は執筆されていません。