タグ「絶対値」の検索結果

60ページ目:全755問中591問~600問を表示)
東京海洋大学 国立 東京海洋大学 2012年 第4問
$\displaystyle f(x)=x^3-\frac{7}{2}x^2+\frac{7}{2}x$として数列$\{a_n\}$を
\[ a_1=\frac{4}{3},\quad a_{n+1}=f(a_n) \quad (n=1,\ 2,\ 3,\ \cdots) \]
で定めるとき,次の問に答えよ.

(1)$f(x)$は区間$\displaystyle \frac{4}{5} \leqq x \leqq \frac{4}{3}$で減少することを示せ.

(2)$\displaystyle \frac{4}{5} \leqq a_n \leqq \frac{4}{3} (n=1,\ 2,\ 3,\ \cdots)$を示せ.

(3)$\displaystyle \frac{1}{3} \left( \frac{9}{25} \right)^{n-1} \leqq |a_n-1| \leqq \frac{1}{3} \left( \frac{9}{16} \right)^{n-1} (n=1,\ 2,\ 3,\ \cdots)$を示せ.
愛媛大学 国立 愛媛大学 2012年 第2問
次の問いに答えよ.

(1)$a,\ b$を実数で,$a \neq 0$とする.$\displaystyle c=\frac{2+3ai}{a-bi}$が純虚数のとき,$b$と$c$の値を求めよ.
(2)定積分$\displaystyle \int_0^{2\pi} |x \cos \displaystyle\frac{x|{3}} \, dx$を求めよ.
(3)直方体の各面にさいころのように$1$から$6$までの目が書かれている.この直方体を投げて,$1,\ 6$の目が出る確率はともに$p$であり,$2,\ 3,\ 4,\ 5$の目が出る確率はいずれも$q$である.この直方体を$1$回投げて,出た目の数を得点とする.このとき,得点の期待値は$p,\ q$の値によらずに一定であることを示せ.
(4)座標平面上の曲線
\[ x=2 \cos \theta+1,\quad y=3 \sin \theta \quad (0 \leqq \theta \leqq 2\pi) \]
で囲まれた図形を$x$軸の回りに$1$回転して得られる回転体の体積を求めよ.
早稲田大学 私立 早稲田大学 2012年 第1問
$a,\ b$を実数とする.$2$次方程式
\[ x^2+(a-1)x+b+1 = 0 \]
が実数解を持ち、すべての解の絶対値が$1$以下になっているとき,次の問いに答えよ.

(1)点$(a,\ b)$が存在する領域を$D$とする.$D$に含まれる
$a$の最大値は$[ア]$,最小値は$[イ]$,
$b$の最大値は$[ウ]$,最小値は$[エ]$である.
(2)領域$D$の面積は$[オ]$である.
早稲田大学 私立 早稲田大学 2012年 第3問
次の問いに答えよ.

(1)整数$x,\ y$が$x^2-23y^2=1$を満たすとき,次の問いに答えよ.

(2)$1<x+\sqrt{23}y<49$のとき,$x=[ケ]$,$y=[コ]$である.
(3)$1$より小なる$x+\sqrt{23}y$が最大になるのは$x=[サ]$,$y=[シ]$のときである.

(4)曲線$y=x^2$,$x$軸,および直線$x=1$で囲まれた図形の面積を$S$とする.この図形の面積の近似値を以下の方法を用いて求める.区間$0 \leqq x \leqq 1$を$n$等分し,$i (1 \leqq i \leqq n)$番目の区間$\displaystyle\frac{(i-1)}{n} \leqq x \leqq \frac{i}{n}$を底辺とする高さ$\displaystyle \left( \frac{i-\displaystyle\frac{1}{2}}{n} \right)^2$の長方形を考える.これらの長方形の面積の$i$についての総和を$S_n$とする.

(i) $S_n=[ス]$である.
(ii) $\displaystyle |S-S_n| \leq \frac{1}{30000}$となる$n$の最小値は$[セ]$である.
明治大学 私立 明治大学 2012年 第1問
次の各問の$[ ]$にあてはまる数または式を入れよ.

(1)$\sin \theta + \cos \theta = \displaystyle\frac{1}{2}$のとき,$\sin \theta \cos \theta = - \displaystyle\frac{[ア]}{[イ]}$である.     
(2)不等式$|5x-41|<2x+1$を満たす整数$x$の最大値は[ア][イ]であり,最小値は[ウ]である.
(3)$(x-3y+z)^6$の展開式における,$x^2y^2z^2$の項の係数は[ア][イ][ウ]である.
(4)四面体$\mathrm{ABCD}$において,$2$辺$\mathrm{AC}$,$\mathrm{BD}$の中点をそれぞれ$\mathrm{M}$,$\mathrm{N}$とする.また,$\overrightarrow{\mathrm{AB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{AC}}=\overrightarrow{c}$,$\overrightarrow{\mathrm{AD}}=\overrightarrow{d}$とする.このとき,

(i) $\overrightarrow{\mathrm{MN}}$を$\overrightarrow{b},\ \overrightarrow{c},\ \overrightarrow{d}$で表すと,$\overrightarrow{\mathrm{MN}}=[ア]$となる.
(ii) $\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{AD}}+\overrightarrow{\mathrm{CB}}+\overrightarrow{\mathrm{CD}} = [イ]\overrightarrow{\mathrm{MN}}$である.
明治大学 私立 明治大学 2012年 第2問
次の$[ ]$に当てはまる$0$~$9$の数字を解答欄に書け.

座標平面上にある$2$点$\mathrm{P}(2t,\ 2t^3)$,$\mathrm{Q}(-4,\ 4t^2-8)$が,$-2 \leqq t \leqq 2$の範囲で動く.$\ell:y=x+b$とし,$\mathrm{P}$と$\ell$の距離を$\alpha$,$\mathrm{Q}$と$\ell$の距離を$\beta$とする.$\mathrm{P}$は,$\ell$より上側にあり,$\mathrm{Q}$は,$\ell$より下側にあるとする.$\mathrm{P}$,$\mathrm{Q}$,$\ell$の位置関係から$b$の範囲は,
$[ア]t^2 - [イ] < b < [ウ] t^3 - [エ]t$
となる.従って,$t$の範囲は,
$-[オ] < t < [カ]$
でなければならない.

$\displaystyle \alpha = \frac{1}{\sqrt{2}} |[キ]t^3 - [ク]t - b|,$
$\displaystyle \beta = \frac{1}{\sqrt{2}} |[ケ]t^2 - [コ] - b|$

だから,$\alpha = \beta$とすると,$b = (t+[サ])(t^2 - [シ])$である.
従って,$\displaystyle \alpha = \beta = \frac{1}{\sqrt{2}} |(t-[ス])(t^2-[セ])|$となり,
この値が,最大となるのは,$t=\frac{[ソ]-\sqrt{[タ]}}{[チ]}$のときで,そのときの値は
\[ \alpha = \frac{[ツ][テ]\sqrt{[ト]}+[ナ]\sqrt{[ニ][ヌ]}}{[ネ][ノ]} \]
である.
明治大学 私立 明治大学 2012年 第2問
以下の$[ ]$にあてはまる値を答えよ.
\[ f(x) = \frac{1}{2}x^2 -3x -1+|x^2-2x-3| \]
とおく.

(1)不等式$x^2-2x-3 \leqq 0$を解くと$[あ]$となる.
(2)方程式$f(x)=0$の実数解をすべて求めると$[い]$となる.
(3)関数$y=f(x)$の定義域を$-2 \leqq x \leqq 5$とするとき,値域は$[う]$となる.
明治大学 私立 明治大学 2012年 第2問
$f(x)=x^3-48x,\ g(x)=9x+k$($k$は定数)がある.以下の問に答えなさい.

(1)$y=f(x)$と$y=g(x)$のグラフが$3$つの異なる交点を持つ必要十分条件は$|k|<[ケ][コ]\sqrt{[サ][シ]}$である.
(2)$y=f(x)$は,$x=a$のとき,極大値$b$をとる.また,$g(a)=c$とする.
$\log_{10}b-7\log_{10}c+7=0$が成立するのは,$k=[ス][セ]$のときである.このとき,$y=f(x)$と$y=g(x)$のグラフは,$3$つの異なる交点をもち,それらの$x$座標の値は,小さい順に並べると$-[ソ],\ -[タ],\ [チ]$となる.
法政大学 私立 法政大学 2012年 第1問
$f(x)=|2x^2-10x+9|$とおく.

(1)$y=f(x)$のグラフをかけ.
(2)$y=f(x)$のグラフと直線$y=ax+1$がちょうど$4$個の共有点をもつような,実数の定数$a$の値の範囲を求めよ.
明治大学 私立 明治大学 2012年 第3問
行列$A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)$の成分は,$a+d-1=ad-bc$を満たすとする.また,数列$x_0,\ x_1,\ x_2,\ \cdots$と$y_0,\ y_1,\ y_2,\ \cdots$は
\[ \left( \begin{array}{c}
x_n \\
y_n
\end{array} \right)=A \left( \begin{array}{c}
x_{n-1} \\
y_{n-1}
\end{array} \right) \quad (n=1,\ 2,\ 3,\ \cdots) \]
を満たすとする.座標平面上の点$(x_n,\ y_n)$を$\mathrm{P}_n$と表し,$\mathrm{O}$は原点とする.点$\mathrm{O}$,$\mathrm{P}_0$,$\mathrm{P}_1$は同一直線上にはないと仮定し,$g=ad-bc$とおく.
以下の$[ ]$にあてはまるものを,$g,\ n$を用いて表せ.

(1)$\overrightarrow{\mathrm{OP}}_2=([え]) \overrightarrow{\mathrm{OP}}_1+([お]) \overrightarrow{\mathrm{OP}}_0$である.
(2)$g \neq 1$のとき
\[ \overrightarrow{\mathrm{OP}}_n=\frac{[か]}{1-g} \overrightarrow{\mathrm{OP}}_1+\frac{[き]}{1-g} \overrightarrow{\mathrm{OP}}_0 \quad (n=2,\ 3,\ 4,\ \cdots) \]
である.
(3)$|g|<1$のとき
\[ \begin{array}{l}
\lim_{n \to \infty}x_n=[く]x_1+[け]x_0 \\
\lim_{n \to \infty}y_n=[く]y_1+[け]y_0
\end{array} \]
である.
(4)$0<g<1$とする.点$\displaystyle \left( \lim_{n \to \infty}x_n,\ \lim_{n \to \infty}y_n \right)$は線分$\mathrm{P}_1 \mathrm{P}_0$を$[こ]:1$に外分する.
スポンサーリンク

「絶対値」とは・・・

 まだこのタグの説明は執筆されていません。