タグ「絶対値」の検索結果

41ページ目:全755問中401問~410問を表示)
金沢工業大学 私立 金沢工業大学 2014年 第1問
次の問いに答えよ.

(1)$p=(\sqrt{3}+\sqrt{5})^2$,$q=(\sqrt{3}-\sqrt{5})^2$のとき$p+q=[アイ]$,$pq=[ウ]$,$p^2+q^2=[エオカ]$である.

(2)連立不等式$\left\{ \begin{array}{r}
|2x-9| \leqq 5 \\
9-2x \leqq 4
\end{array} \right.$の解は$\displaystyle \frac{[キ]}{[ク]} \leqq x \leqq [ケ]$である.

(3)$(2x-1)^5(y-2)^4$の展開式における$x^2y^3$の項の係数は$[コサシ]$である.
(4)${0}^\circ<\theta<{90}^\circ$で,$\displaystyle \tan \theta=\frac{4}{3}$のとき,
\[ \frac{\sin (\theta+{90}^\circ)+\tan (\theta+{90}^\circ)}{\sin ({180}^\circ-\theta)+\tan ({180}^\circ-\theta)}=\frac{[ス]}{[セソ]} \]
である.
(5)$p,\ q$を定数とし,$q<0$とする.$2$次関数$y=px^2+qx+2q$のグラフの頂点の座標が$(-4q,\ -40)$のとき,$\displaystyle p=\frac{[タ]}{[チ]}$,$q=[ツテ]$である.
(6)赤玉が$5$個,白玉が$3$個入っている袋がある.この袋の中から玉を同時に$2$個取り出すとき,少なくとも$1$個が白玉である確率は$\displaystyle \frac{[ト]}{[ナニ]}$である.
(7)$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の$3$個のさいころを同時に投げて,それぞれの出る目を$a,\ b,\ c$とする.このとき,積$abc$が奇数になる組$(a,\ b,\ c)$は$[ヌネ]$組あり,偶数になる組$(a,\ b,\ c)$は$[ノハヒ]$組ある.
(8)$\triangle \mathrm{ABC}$において,$\mathrm{AP}:\mathrm{PB}=\mathrm{AQ}:\mathrm{QC}=1:3$となるように点$\mathrm{P}$を辺$\mathrm{AB}$上に,点$\mathrm{Q}$を辺$\mathrm{AC}$上にとる.線分$\mathrm{BQ}$と線分$\mathrm{CP}$の交点を$\mathrm{R}$とすると,$\displaystyle \triangle \mathrm{PQR}=\frac{[フ]}{[ヘホ]} \triangle \mathrm{BCR}$である.
近畿大学 私立 近畿大学 2014年 第3問
$xy$平面上の点$\mathrm{P}$の$x$座標,$y$座標をそれぞれ$\mathrm{P}_x$,$\mathrm{P}_y$と書く.$\mathrm{P}_x$,$\mathrm{P}_y$がともに整数であるような点$\mathrm{P}$を格子点という.次の問に答えよ.

(1)原点$\mathrm{O}$と点$\mathrm{A}(18,\ 12)$を結ぶ線分$\mathrm{OA}$がある.線分$\mathrm{OA}$上にある格子点の個数を求めよ.ただし両端$\mathrm{O}$,$\mathrm{A}$も線分$\mathrm{OA}$上の点とする.
(2)$\mathrm{O}$,$\mathrm{A}$と点$\mathrm{B}(18,\ 0)$を頂点とする$\triangle \mathrm{OAB}$の周または内部にある格子点の個数を求めよ.
(3)$n$を正の整数とする.$2$点$\mathrm{C}(n,\ 0)$,$\mathrm{D}(0,\ n)$を考える.格子点$\mathrm{P}$が$\triangle \mathrm{OCD}$の周または内部を動くとき$\mathrm{P}_x$の総和を$m_1$とおく.また$|\mathrm{P|_x-\mathrm{P}_y}$の総和を$n$が偶数のとき$m_2$,$n$が奇数のとき$m_3$とする.$m_1$,$m_2$,$m_3$を$n$の式で表せ.ただし解答は$an^3+bn^2+cn+d$のように$n$の次数について整理し,降べきの順(次数の高い順)に書くこと.
産業医科大学 私立 産業医科大学 2014年 第1問
空欄にあてはまる適切な数,式,記号などを記入しなさい.

(1)実数$x$の関数$f(x)=|\sin 2x+2 \sin x+2 \cos x|$の最大値は$[ア]$である.
(2)行列$A=\left( \begin{array}{cc}
\cos \theta & -2 \sin \theta \\
\displaystyle\frac{1}{2} \sin \theta & \cos \theta
\end{array} \right)$が$0<\theta<\pi$の範囲で$A^5=A^2$を満たすとき,実数$\theta$の値は$[イ]$である.
(3)定積分$\displaystyle \int_0^{-1} \frac{x^2-1}{x^2+1} \, dx$の値は$[ウ]$である.
(4)$n$をある自然数とする.実数$x$に対して,方程式$7 \sin^{8n} x+x=0$の解の個数は$[エ]$である.
(5)$\displaystyle 0<a<\frac{1}{4}$とする.座標平面において,方程式$\displaystyle -4ax+\sqrt{(x+a)^2+y^2}=\frac{1}{4}$で表される曲線が囲む図形の面積は$[オ]$である.
(6)$x+y+z+w=20$を満たす正の整数$x,\ y,\ z,\ w$の組は全部で$[カ]$個である.
(7)$7$つの実数$\displaystyle \frac{1}{2}$,$\sqrt{\pi}$,$\sqrt{3}$,$\displaystyle \frac{\pi^2}{8}$,$\displaystyle \sin \frac{\pi}{8}$,$\displaystyle \cos \frac{\pi}{8}$,$\displaystyle \tan \frac{\pi}{8}$を小さい方から順に並べたものを$A<B<C<D<E<F<G$とする.このとき実数$A^2$の値は$[キ]$であり,$E^2-F^2+G^2$の値は$[ク]$である.
中部大学 私立 中部大学 2014年 第3問
関数$f(x)=x^2-4 |x+2|+2x+4$について,次の問いに答えよ.

(1)曲線$y=f(x)$の概形をかけ.
(2)$y=f(x)$のグラフに$2$点で接する直線の方程式を求めよ.
(3)$(2)$で求めた接線と$y=f(x)$が囲む部分の面積を求めよ.
名城大学 私立 名城大学 2014年 第4問
数列$\{a_n\}$を
\[ a_n=\int_0^1 |nx-1| e^x \, dx \quad (n=1,\ 2,\ 3,\ \cdots) \]
で定める.次の各問に答えよ.

(1)$a_1,\ a_2$を求めよ.
(2)$a_n$を求めよ.
(3)$\displaystyle \lim_{n \to \infty} \frac{a_n}{n}$を求めよ.
千葉工業大学 私立 千葉工業大学 2014年 第3問
次の各問に答えよ.

(1)折れ線$L:y=4 |x|-5 |x-2|+4 |x-3|$は
$x<0$のとき,$y=[アイ]x+[ウ]$
$0 \leqq x<2$のとき,$y=[エ]x+[オ]$
$2 \leqq x<3$のとき,$y=[カキ]x+[クケ]$
$3 \leqq x$のとき,$y=3x-2$
と表される.$L$と直線$y=2x+k$($k$は定数)の共有点が$4$個となるような$k$の値の範囲は,$[コ]<k<[サ]$である.
(2)数列$\{a_n\} (n=1,\ 2,\ 3,\ \cdots)$を初項$a_1=3$,公差$4$の等差数列とすると,$a_{50}=[シスセ]$である.数列$\{b_n\} (n=1,\ 2,\ 3,\ \cdots)$を初項$b_1=5$で,$b_{50}=299$をみたす等差数列とすると,$\{b_n\}$の公差は$[ソ]$である.
集合$A,\ B$を
\[ A=\{a_1,\ a_2,\ \cdots,\ a_{50} \},\quad B=\{b_1,\ b_2,\ \cdots,\ b_{50} \} \]
と定める.共通部分$A \cap B$の要素のうち,最小のものは$[タチ]$であり,$A \cap B$の要素の個数は$[ツテ]$である.
大阪工業大学 私立 大阪工業大学 2014年 第1問
次の空所を埋めよ.

(1)$2$次方程式$x^2-4x+2=0$の解を$\alpha,\ \beta$とするとき,$\alpha+\beta=[ア]$であり,$\alpha^3+\beta^3=[イ]$である.
(2)関数$y=|x^2-2x|$のグラフと直線$y=x-1$の共有点の$x$座標は$[ウ]$と$[エ]$である.ただし,$[ウ]<[エ]$とする.
(3)$2$個のさいころを同時に投げるとき,$2$個の目がともに$5$となる確率は$[オ]$であり,少なくとも$1$個の目が$5$以上である確率は$[カ]$である.
(4)$a$を実数とするとき,$\displaystyle \int_0^2 (6x^2-2ax-a^2) \, dx \geqq 0$となるための必要十分条件は$[キ] \leqq a \leqq [ク]$である.
大阪工業大学 私立 大阪工業大学 2014年 第1問
次の空所を埋めよ.

(1)$2$次方程式$x^2-4x+2=0$の解を$\alpha,\ \beta$とするとき,$\alpha+\beta=[ア]$であり,$\alpha^3+\beta^3=[イ]$である.
(2)関数$y=|x^2-2x|$のグラフと直線$y=x-1$の共有点の$x$座標は$[ウ]$と$[エ]$である.ただし,$[ウ]<[エ]$とする.
(3)$2$個のさいころを同時に投げるとき,$2$個の目がともに$5$となる確率は$[オ]$であり,少なくとも$1$個の目が$5$以上である確率は$[カ]$である.
(4)$a$を実数とするとき,$\displaystyle \int_0^2 (6x^2-2ax-a^2) \, dx \geqq 0$となるための必要十分条件は$[キ] \leqq a \leqq [ク]$である.
中部大学 私立 中部大学 2014年 第1問
次の$[ア]$から$[コ]$にあてはまる数字または符号を記入せよ.

(1)$\displaystyle \frac{4 \sqrt{3}}{\sqrt{2}+\sqrt{3}-\sqrt{5}}-2 \sqrt{4+\sqrt{15}}=[ア]$
(2)平行四辺形$\mathrm{OACB}$において$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とする.辺$\mathrm{OA}$を$2:1$に分ける点を$\mathrm{D}$,辺$\mathrm{OB}$の中点を$\mathrm{E}$とし,$\mathrm{BD}$と$\mathrm{CE}$の交点を$\mathrm{F}$とする.このとき,$\displaystyle \overrightarrow{\mathrm{OF}}=\frac{[イ]}{[ウ]} \overrightarrow{a}+\frac{[エ]}{[オ]} \overrightarrow{b}$である.
(3)あるパーティー会場には$100$名の来場者があった.来場までの交通手段についてアンケートをとったところ,電車を利用した人が$46$名,バスを利用した人が$53$名,両方とも利用した人が$12$名であった.無回答の人はいなかった.このとき,電車もバスも利用していない人は$[カ][キ]$名である.
(4)$\displaystyle \int_{-3}^2 (|x^2+x-2|+1) \, dx=\frac{[ク][ケ]}{[コ]}$
早稲田大学 私立 早稲田大学 2014年 第3問
次の各問に答えよ.ただし,$(2)$は答のみ解答欄に記入せよ.

(1)放物線$y=ax^2+bx (a>0)$と直線$y=mx$が異なる$2$点で交わるとする.原点と異なる交点の$x$座標を$\alpha$とするとき,放物線と直線で囲まれた図形の面積は$\displaystyle S=\frac{1}{6}a |\alpha|^3$であることを示せ.
(2)$2$つの放物線$C_1:y=a_1x^2+b_1x$,$C_2:y=a_2x^2+b_2x$が異なる$2$点で交わるとする.ただし,$a_1a_2<0$とする.

(i) 放物線$C_1$,$C_2$の$2$つの交点を通る直線を$\ell:y=mx$とするとき,$m$を求めよ.
(ii) 放物線$C_i$と直線$\ell$で囲まれた図形の面積を$S_i (i=1,\ 2)$とするとき,$\displaystyle \frac{S_2}{S_1}$を求めよ.
(iii) $m=1$かつ$S_1=S_2$のとき,$a_i,\ b_i (i=1,\ 2)$が満たす条件を求めよ.
スポンサーリンク

「絶対値」とは・・・

 まだこのタグの説明は執筆されていません。