タグ「絶対値」の検索結果

34ページ目:全755問中331問~340問を表示)
岡山県立大学 公立 岡山県立大学 2015年 第4問
次の不定積分および定積分を求めよ.

(1)$\displaystyle \int \log (x+1) \, dx$

(2)$\displaystyle \int_0^1 \sqrt{1-x^2} \, dx$

(3)$\displaystyle \int_0^3 \frac{|x-1| \cdot |x-2|-x^2}{x+1} \, dx$
公立はこだて未来大学 公立 公立はこだて未来大学 2015年 第5問
関数$f(x)=|x^2-1|$に対し,$\displaystyle F(a)=\int_a^{a+1}f(x) \, dx$とする.ただし,$a>0$とする.以下の問いに答えよ.

(1)関数$y=f(x)$のグラフをかけ.
(2)$F(a)$を求めよ.
(3)$F(a)$の最小値およびそのときの$a$の値を求めよ.
公立はこだて未来大学 公立 公立はこだて未来大学 2015年 第7問
$n=1,\ 2,\ 3,\ \cdots$に対し,$x$の関数$f_n(x)$を
\[ f_n(x)=\sum_{k=1}^n \frac{{(-1)}^{k-1}}{k}x^k=x+\cdots +\frac{{(-1)}^{n-1}}{n}x^n \]
で定める.ただし,$0 \leqq x<1$とする.以下の問いに答えよ.

(1)$\displaystyle |f_{n+1| \left( \displaystyle\frac{1}{2} \right)-f_n \left( \displaystyle\frac{1}{2} \right)} \leqq \frac{1}{1000(n+1)}$を満たすような$n$の最小値を求めよ.
(2)$\displaystyle \lim_{n \to \infty} {f_n}^\prime(x)$を求めよ.
(3)$n$が偶数であるとき,不等式$f_n(x) \leqq \log (x+1)$を示せ.
奈良県立医科大学 公立 奈良県立医科大学 2015年 第8問
$x$を実数とする.全体集合を実数全体の集合$R$とし,部分集合$A,\ B,\ C$は以下のように定める.

$A=\{x \;|\; 2x-1 \leqq |x-2| \}$
$B=\{x \;|\; x^2-x<0 \}$
$C=\{x \;|\; x^2+x \leqq 0\}$

このとき,$A \cap (\overline{B \cup C})$を求めよ.
高知工科大学 公立 高知工科大学 2015年 第1問
次の各問に答えよ.

(1)$f(x)=|2x+3|$のとき$f(-3)+f(0)+f(3)$の値を求めよ.
(2)方程式$\log_2 (x-1)+\log_2 (x+2)=2$を解け.
(3)$\left\{ \begin{array}{l}
\sin x+\cos y=1 \\
\cos x+\sin y=\displaystyle\frac{1}{2}
\end{array} \right.$のとき$\sin (x+y)$の値を求めよ.
(4)$a,\ b,\ x$を実数とする.命題
\[ x^2-(a+b)x+ab \leqq 0 \Longrightarrow x^2<2x+3 \]
が真となるような定数$a,\ b$の満たすべき条件を求めよ.ただし,$a \leqq b$とする.
(5)$a$を定数とし,関数$y=f(x)$は$x=a$で微分可能であるとする.このとき,極限値
\[ \lim_{h \to 0} \frac{f(a+3h)-f(a-2h)}{h} \]
を$f^\prime(a)$を用いて表せ.
(6)関数$f(x)=\log | \cos x |$の導関数を求めよ.
(7)$2$つの曲線$y=\log x$と$y=ax^2$とがただ$1$つの共有点をもつような正の定数$a$の値を求めよ.
(8)等式$\displaystyle \lim_{x \to 1} \frac{\sqrt{2x^2+a}-x-1}{(x-1)^2}=b$が成り立つような定数$a,\ b$の値を求めよ.
県立広島大学 公立 県立広島大学 2015年 第1問
$x>0$を実数とし,$\displaystyle f(x)=\left( \frac{10}{x} \right)^{45}$とする.次の問いに答えよ.

(1)$f(2)$の桁数を求めよ.ただし,$\log_{10}2=0.3010$とする.
(2)$|\log_{10|x-0.3010}<0.01$となる実数$x$について,$f(x)$の整数部分の桁数を求めよ.
(3)$d$を定数とする.$|\log_{10|x-0.3010}<d$を満たすすべての実数$x$について,$f(x)$の整数部分の桁数が同じになる.このような性質を持つ定数$d$のとる値の範囲を求めよ.
名古屋市立大学 公立 名古屋市立大学 2015年 第3問
$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$で定義された関数$\displaystyle f(x)=\int_x^{x+\frac{\pi}{4}} |2 \cos^2 t+2 \sin t \cos t-1| \, dt$について,次の問いに答えよ.

(1)$\displaystyle f \left( \frac{\pi}{2} \right)$の値を求めよ.
(2)積分を計算して,$f(x)$を求めよ.
(3)$f(x)$の最大値と最小値,およびそれらを与える$x$の値を求めよ.
名古屋市立大学 公立 名古屋市立大学 2015年 第2問
$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$で定義された関数$\displaystyle f(x)=\int_x^{x+\frac{\pi}{4}} |2 \cos^2 t+2 \sin t \cos t-1| \, dt$について,次の問いに答えよ.

(1)$\displaystyle f \left( \frac{\pi}{2} \right)$の値を求めよ.
(2)積分を計算して,$f(x)$を求めよ.
(3)$f(x)$の最大値と最小値,およびそれらを与える$x$の値を求めよ.
名古屋市立大学 公立 名古屋市立大学 2015年 第3問
自然数$n$に対して,$0$以上の実数を定義域とする$x$の関数$R_n(x)$を
\[ R_n(x)=\frac{1}{1+x^p}-\sum_{k=0}^{n-1}(-x^p)^k \]
とする.ただし,$p$は正の定数である.以下の問いに答えよ.

(1)次の不等式を示せ.
\[ |\int_0^1 R_n(x) \, dx|<\frac{1}{pn+1} \]
(2)次の等式を示せ.
\[ \int_0^1 \frac{dx}{1+x^p}=\sum_{k=0}^\infty \frac{(-1)^k}{pk+1} \]
(3)以上の結果を利用して次の無限級数の和を求めよ.

(i) $\displaystyle S_1=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\cdots$

(ii) $\displaystyle S_2=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\cdots$
会津大学 公立 会津大学 2015年 第1問
次の空欄をうめよ.

(1)次の積分を求めよ.

(i) $\displaystyle \int_0^1 \log (2x+1) \, dx=[イ]$

(ii) $\displaystyle \int_0^{\frac{\pi}{2}} \cos^3 x \, dx=[ロ]$

(iii) $\displaystyle \int_0^\pi |\sin 2x| \, dx=[ハ]$

(2)次の極限を求めよ.
\[ \lim_{n \to \infty} \left( \frac{1}{1 \cdot 3}+\frac{1}{2 \cdot 4}+\frac{1}{3 \cdot 5}+\cdots +\frac{1}{n(n+2)} \right)=[ニ] \]
(3)方程式$\displaystyle \log_2 (x-10)=3+\log_2 \frac{3}{x}$の解は$x=[ホ]$である.
(4)$0 \leqq x<2\pi$において,$-\sin x+\sqrt{3} \cos x$は$x=[ヘ]$のとき,最大値$[ト]$をとる.
(5)以下の文章に「必要条件である」,「十分条件である」,「必要十分条件である」,「必要条件でも十分条件でもない」のうち最も適するものを入れよ.ただし,$n$は自然数とする.

(i) $n$が$6$の倍数であることは,$n$が$3$の倍数であるための$[チ]$.
(ii) $n$が奇数であることは,$n^2$が奇数であるための$[リ]$.
スポンサーリンク

「絶対値」とは・・・

 まだこのタグの説明は執筆されていません。