タグ「絶対値」の検索結果

33ページ目:全755問中321問~330問を表示)
京都産業大学 私立 京都産業大学 2015年 第2問
$a$を$0$以上の実数とし,
\[ S(a)=\int_0^1 |x^2-ax| \, dx \]
とする.

(1)$S(2)=[ア]$である.

(2)$\displaystyle S \left( \frac{1}{2} \right)=[イ]$である.

(3)$a>1$のとき,$S(a)=[ウ]$である.
$0 \leqq a \leqq 1$のとき,$S(a)=[エ]$である.
(4)$S(a)$は$a=[オ]$のとき最小値$[カ]$をとる.
広島女学院大学 私立 広島女学院大学 2015年 第5問
命題「$\displaystyle 2 |x-\displaystyle\frac{1|{2}}-x>0$ならば$x>1$」について,次の問いに答えよ.

(1)逆を述べよ.
(2)逆の真偽を真か偽で答えよ.
(3)裏を述べよ.
(4)裏の真偽を真か偽で答えよ.
(5)対偶を述べよ.
(6)対偶の真偽を真か偽で答えよ.
崇城大学 私立 崇城大学 2015年 第1問
次の各問に答えよ.

(1)不等式$|x^2-x-6| \geqq x+2$を解け.
(2)方程式$2 \log_3 x-2 \log_x 3+3=0$を解け.
(3)$\mathrm{AB}=1$,$\mathrm{AD}=2$,$4 \mathrm{AC}=3 \mathrm{BD}$の平行四辺形$\mathrm{ABCD}$がある.対角線$\mathrm{AC}$,$\mathrm{BD}$の長さを求めよ.
東京理科大学 私立 東京理科大学 2015年 第2問
$s$を$-1 \leqq s \leqq 1$を満たす実数とする.$xy$平面上のベクトル$\overrightarrow{a_s},\ \overrightarrow{b_s},\ \overrightarrow{c_s}$を
\[ \overrightarrow{a_s}=\left( s,\ \sqrt{1-s^2} \right),\quad \overrightarrow{b_s}=\left( \sqrt{1-s^2},\ -s \right),\quad \overrightarrow{c_s}=\left( s \sqrt{1+s^2},\ \sqrt{1-s^4} \right) \]
と定める.$t$を実数とし,$f_t(s),\ g_t(s),\ h_t(s),\ k_t(s)$を


$\displaystyle \overrightarrow{a_s}+\frac{t}{|\overrightarrow{b_s}|} \overrightarrow{b_s}=(f_t(s),\ g_t(s))$

$\displaystyle \overrightarrow{a_s}-\frac{t}{|\overrightarrow{c_s}|} \overrightarrow{c_s}=(h_t(s),\ k_t(s))$


により定める.さらに,$s$を媒介変数とする$2$つの曲線

$\displaystyle C_t:x=f_t(s),\ y=g_t(s) \quad \left( -\frac{1}{2} \leqq s \leqq 1 \right),$
$K_t:x=h_t(s),\ y=k_t(s) \quad (-1 \leqq s \leqq 1)$

を考える.次の各問いに答えよ.

(1)$f_t(s),\ g_t(s),\ h_t(s),\ k_t(s)$を$s$と$t$を用いて表せ.
(2)$\overrightarrow{a_s}$と$\overrightarrow{b_s}$のなす角,および,$\overrightarrow{a_s}$と$\overrightarrow{c_s}$のなす角を求めよ.
(3)${f_t(s)}^2+{g_t(s)}^2$を$t$のみを用いて表せ.
(4)$t$が$0$から$\sqrt{3}$まで動くとき,$C_t$が通過する部分を$D$とする.$D$を図示せよ.
(5)$(4)$で定めた$D$の面積を求めよ.
(6)$(4)$で定めた$D$を$x$軸のまわりに$1$回転して得られる回転体の体積を求めよ.
(7)$K_{\frac{1}{2}},\ K_1,\ K_{\frac{3}{2}}$を図示せよ.
(8)$t$が$\displaystyle \frac{1}{2} \leqq |t-1| \leqq 1$を満たす範囲を動くとき,$K_t$が通過する部分の面積を求めよ.
明治大学 私立 明治大学 2015年 第3問
次の空欄に当てはまる数字を入れよ.

(1)$y=(x-1) |x-2|$のグラフと$y=k$のグラフが異なる$3$点で交わるような定数$k$の値の範囲は
\[ [ア]<k<\frac{[イ]}{[ウ]} \]
である.
(2)$y=(x-1) |x-2|$のグラフと$y=kx+k-1$のグラフが異なる$3$点で交わるような定数$k$の値の範囲は
\[ \frac{[エ]}{[オ]}<k<[カ]-[キ] \sqrt{[ク]} \]
または
\[ [カ]+[キ] \sqrt{[ク]}<k \]
である.
(3)$k>1$のとき,$y=(x-1) |x-k|$のグラフと$y=kx-k^2+1$のグラフが異なる$3$点で交わるような定数$k$の値の範囲は
\[ \frac{[ケ]}{[コ]}<k \]
である.これらの交点の$x$座標を小さいほうから$x_1,\ x_2,\ x_3$とする.
このとき,$x_3-x_2=k$となるような$k$の値は$[サ]$である.
中京大学 私立 中京大学 2015年 第3問
$x$についての方程式$\log_{\sqrt{2}}x+\log_x 16=k$は$|k|>[ア] \sqrt{2}$のとき異なる$2$つの実数解$x_1,\ x_2$をもつ.このとき,$\displaystyle \log_2 x_1+\log_2 x_2=\frac{k}{[イ]}$,$x_1^{\log_{\sqrt{2}}x_2}=[ウエ]$である.
千葉工業大学 私立 千葉工業大学 2015年 第3問
次の各問に答えよ.

(1)$\displaystyle f(x)=|\displaystyle\frac{7|{2}x-3}-x$とする.方程式$f(x)=0$の解は,小さい順に,$\displaystyle x=\frac{[ア]}{[イ]}$,$\displaystyle \frac{[ウ]}{[エ]}$である.

折れ線$L:y=|f(x)|$と直線$y=k$(ただし,$k$は定数)がちょうど$3$点を共有するのは$\displaystyle k=\frac{[オ]}{[カ]}$のときであり,$L$と直線$y=mx-1$(ただし,$m$は定数)がちょうど$3$点を共有するのは$\displaystyle m=\frac{[キ]}{[ク]},\ \frac{[ケコ]}{[サ]}$のときである.

(2)三角形$\mathrm{ABC}$の内部の点$\mathrm{P}$に対して,等式$\overrightarrow{\mathrm{AP}}+5 \overrightarrow{\mathrm{BP}}+4 \overrightarrow{\mathrm{CP}}=k \overrightarrow{\mathrm{AB}}$(ただし,$k$は実数)が成り立つ.このとき,
\[ \overrightarrow{\mathrm{AP}}=\frac{k+[シ]}{[スセ]} \overrightarrow{\mathrm{AB}}+\frac{[ソ]}{[タ]} \overrightarrow{\mathrm{AC}} \]
である.直線$\mathrm{AP}$と辺$\mathrm{BC}$との交点$\mathrm{Q}$が$\mathrm{BC}$を$3:2$に内分するとき,
\[ \overrightarrow{\mathrm{AP}}=\frac{[チ]}{[ツ]} \overrightarrow{\mathrm{AQ}},\quad k=\frac{[テト]}{[ナ]} \]
である.
東京薬科大学 私立 東京薬科大学 2015年 第1問
次の問に答えよ.ただし,$*$については$+,\ -$の$1$つが入る.

(1)$\displaystyle a=\frac{1}{\sqrt{2}+\sqrt{3}},\ b=\frac{1}{\sqrt{2}-\sqrt{3}}$のとき,$a+b=[$*$ア] \sqrt{[イ]}$,$a^2+b^2=[ウエ]$である.
(2)$\overrightarrow{p},\ \overrightarrow{q}$が$|\overrightarrow{p|}=2$,$|\overrightarrow{q|}=3$を満たし,$\overrightarrow{p}+\overrightarrow{q}$,$6 \overrightarrow{p}-\overrightarrow{q}$が垂直のとき,$\overrightarrow{p}$と$\overrightarrow{q}$とのなす角$\theta$は$\displaystyle \frac{[オ]}{[カ]} \pi$である.ただし,$0 \leqq \theta \leqq \pi$とする.

(3)$1.44^n$の整数部分が$4$桁となるような整数$n$の範囲は$[キク] \leqq n \leqq [ケコ]$である.必要ならば$\log_{10}2=0.301$,$\log_{10}3=0.477$を用いよ.
(4)$x,\ y$が$2^x=3^y$を満たす正の実数であるとする.$2x$と$3y$の小さい方の値が$1$であるとき,$\displaystyle x+y=\frac{[サ]}{[シ]}$である.ただし,$\displaystyle \log_{10}2=\frac{3}{10}$,$\displaystyle \log_{10}3=\frac{1}{2}$として計算せよ.
沖縄国際大学 私立 沖縄国際大学 2015年 第1問
以下の各問いに答えなさい.

(1)次の式を展開しなさい.

(i) $(x-1)(x-2)(x+2)(x+1)$
(ii) $(x+3)^2(x-3)^2$

(2)$m+n=1$となる整数$m$と自然数$n$の組み合わせを次の$\zenkakkoa$~$\zenkakkoki$からすべて選びなさい.
$\zenkakkoa m=1,\ n=0$ \qquad $\zenkakkoi m=0,\ n=1$ \qquad $\zenkakkou m=3,\ n=-2$
$\displaystyle \zenkakkoe m=-0.5,\ n=1.5$ \qquad $\displaystyle \zenkakkoo m=\frac{3}{5},\ n=\frac{2}{5}$ \qquad $\zenkakkoka m=-\sqrt{1},\ n=\sqrt{4}$
$\zenkakkoki m=-5,\ n=6$

(3)$\displaystyle -\frac{4x-1}{3} \leqq x+1$を解きなさい.

(4)$|x+6|>3x$を解きなさい.
首都大学東京 公立 首都大学東京 2015年 第4問
座標平面において曲線$y=k(1-x^2)-1$($k$は正の定数)を$C_1$とし,曲線$y=1-|x|$を$C_2$とする.このとき,以下の問いに答えなさい.

(1)$C_1$は$k$の値によらない定点を通る.この定点の座標をすべて求めなさい.
(2)$C_1$と$C_2$が共有点をもつような正の定数$k$の値の範囲を求めなさい.
(3)正の定数$k$が$(2)$で求めた範囲にあるとき,$C_1$と$C_2$の共有点の個数を求めなさい.
スポンサーリンク

「絶対値」とは・・・

 まだこのタグの説明は執筆されていません。