タグ「絶対値」の検索結果

32ページ目:全755問中311問~320問を表示)
広島経済大学 私立 広島経済大学 2015年 第1問
次の各問の空欄に当てはまる最も適切な数値を記入せよ.

(1)$\displaystyle x=\frac{4-\sqrt{7}}{3}$のとき,次の式の値を求めよ.


(i) $\displaystyle x+\frac{1}{x}=\frac{[$1$]}{[$2$]}$

(ii) $\displaystyle x^2+\frac{1}{x^2}=\frac{[$3$]}{[$4$]}$

(iii) $\displaystyle \left( x-\frac{1}{2x} \right)^2+\left( \frac{x}{2}-\frac{1}{x} \right)^2=\frac{[$5$]}{[$6$]}$

(2)$|6x-4|<8$の解は$\displaystyle -\frac{[$7$]}{[$8$]}<x<[$9$]$である.
東京都市大学 私立 東京都市大学 2015年 第1問
次の問に答えよ.

(1)関数$\displaystyle y=\frac{\sin x}{x}$のグラフの$x=\pi$における接線の方程式を求めよ.
(2)$xy$平面上の$3$点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(a,\ b)$,$\mathrm{B}(2 \cos {30}^\circ,\ 2 \sin {30}^\circ)$を頂点とする$\triangle \mathrm{OAB}$は$\angle \mathrm{OBA}={90}^\circ$,$\angle \mathrm{AOB}={15}^\circ$を満たす.このとき$a$の値を求めよ.ただし,$a<\sqrt{3}$とする.
(3)不等式$|x+1|-3 |x-1| \geqq 0$を満たす実数$x$の範囲を求めよ.
旭川大学 私立 旭川大学 2015年 第1問
次の設問に答えよ.

(1)$|3-x|<9$を解きなさい.
(2)周の長さが$20 \, \mathrm{cm}$の長方形の面積が$16 \, \mathrm{cm}^2$より小さくなるときの$1$辺の長さの範囲を求めよ.
(3)フルマラソン($42.195 \, \mathrm{km}$)を$4$時間$10$分で完走した場合,分速は何$\mathrm{m}$か求めよ.
(4)$0$~$5$までの数字が書かれたカードを$3$枚引いて$3$桁の整数を作りたい.整数はいくつできるか求めよ.ただし,カードは$1$枚ずつ$3$回引いて,一度引いたらもとに戻さない.
昭和大学 私立 昭和大学 2015年 第3問
次の各問に答えよ.

(1)空間に$3$点$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{A}(1,\ 2,\ 3)$,$\mathrm{B}(2,\ -1,\ 4)$がある.次の問に答えよ.
$(1$-$1)$ $\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$の内積$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}$を求めよ.
$(1$-$2)$ $\cos \angle \mathrm{AOB}$の値を求めよ.
$(1$-$3)$ $\triangle \mathrm{OAB}$の面積を求めよ.
(2)$\displaystyle \left( 2x^3-\frac{1}{3x} \right)^9$の展開式における$\displaystyle \frac{1}{x}$の係数を求めよ.
(3)実数全体で定義された関数$\displaystyle f(x)=\frac{x^4+5x^2+11}{x^2+2}$の最小値を求めよ.
(4)曲線$y=\sqrt{2+|4x-2x^2|}$と直線$y=m(x+3)$が相異なる$4$個の交点をもつような定数$m$の値の範囲を求めよ.
東京都市大学 私立 東京都市大学 2015年 第1問
次の$[ ]$を埋めよ.

(1)$\log_2 104+\log_2 (27+2+2)-\log_2(2015 \times 2 \div 10)$の値は$[ア]$である.
(2)実数$x,\ y$が等式$(2+xi)(5+i)=3y-8i$を満たすとき,$x=[イ]$,$y=[ウ]$である.ただし,$i$は虚数単位とする.
(3)整式$P(x)=x^4$を$x-2$で割ると商が$[エ]$,余りが$[オ]$となる.$P(x)$を$(x-2)^2$で割ると商が$[カ]$,余りが$[キ]$となる.
(4)$3$次方程式$\displaystyle \frac{2}{3}x^3-ax^2+a=0$が異なる$3$個の実数解をもつとき,実数の定数$a$の値の範囲は$[ク]$である.
(5)自然数$n$に対して$a_n=2^{-n}$,$\displaystyle b_n=\int_{a_{n+1}}^{a_n} x \, dx$,$\displaystyle c_n=\sum_{k=1}^n b_k$と定義する.$b_n$を$n$の式で表すと$b_n=[ケ]$となるので,数列$\{b_n\}$は初項$[コ]$,公比$[サ]$の等比数列といえる.また,$c_n$を$n$の式で表すと$c_n=[シ]$となるので,数列$\{c_n\}$の和$\displaystyle S_n=\sum_{k=1}^n c_k$を$n$の式で表すと$\displaystyle S_n=[ス]$となる.
(6)$1$個のさいころを$4$回続けて投げるとする.$4$回とも同じ目が出る確率は$[セ]$であり,$1$から$4$までの目がそれぞれ$1$回ずつ出る確率は$[ソ]$である.また,出る目が$1$と$2$の$2$種類になる確率は$[タ]$であり,出る目が$1$から$6$までのいずれか$2$種類になる確率は$[チ]$である.
(7)$3$点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(6,\ 3)$,$\mathrm{B}(2,\ 4)$を頂点とする$\triangle \mathrm{OAB}$に対し,$\overrightarrow{\mathrm{OP}}=s \overrightarrow{\mathrm{OA}}+t \overrightarrow{\mathrm{OB}}$とする.実数$s,\ t$が条件$\displaystyle 0 \leqq s+t \leqq \frac{1}{2}$,$s \geqq 0$,$t \geqq 0$を満たしながら動くとき,点$\mathrm{P}$の存在範囲が$\triangle \mathrm{OA}^\prime \mathrm{B}^\prime$の周および内部であるとすると,点$\mathrm{A}^\prime$の座標は$[ツ]$,点$\mathrm{B}^\prime$の座標は$[テ]$である.ただし,点$\mathrm{A}^\prime$は直線$\mathrm{OA}$上,点$\mathrm{B}^\prime$は直線$\mathrm{OB}$上にあるものとする.また,$3$点$\mathrm{O}(0,\ 0)$,$\displaystyle \mathrm{C} \left( 9,\ \frac{9}{2} \right)$,$\mathrm{D}(3,\ 6)$を頂点とする$\triangle \mathrm{OCD}$に対し,$\overrightarrow{\mathrm{OQ}}=s^\prime \overrightarrow{\mathrm{OC}}+t^\prime \overrightarrow{\mathrm{OD}}$とする.点$\mathrm{Q}$の存在範囲が点$\mathrm{P}$の存在範囲と一致するとき,実数$s^\prime$と$t^\prime$の満たす条件は$[ト]$である.
(8)絶対値の記号を用いずに関数$f(x)=|3x^2-3x|-1$を表すと,$0 \leqq x \leqq 1$のとき$f(x)=[ナ]$となり,$x \leqq 0$,$1 \leqq x$のとき$f(x)=[ニ]$となる.したがって,定積分$\displaystyle \int_0^a f(x) \, dx$の値は,$0 \leqq a \leqq 1$のとき$[ヌ]$,$1 \leqq a$のとき$[ネ]$となる.
旭川大学 私立 旭川大学 2015年 第1問
次の各設問に答えなさい.

(1)$\displaystyle 3+\frac{n-2}{2}<\frac{n}{3}$を満たす最大の整数$n$を求めよ.
(2)$a,\ b,\ c$を定数とする.ただし$a \neq 0$とする.$2$次関数$y=ax^2+bx+c$のグラフが$3$点$(-1,\ 2)$,$(2,\ 1)$,$(3,\ -6)$を通るとき,$a,\ b,\ c$の値を求めよ.
(3)$5$個の数字$0,\ 1,\ 2,\ 3,\ 4$を使ってできる$4$桁の整数は全部で$[ア]$通りであり,その中で$2015$以下の整数は$[イ]$通りである.ただし,同じ数字は繰り返し使わないものとする.
(4)$\triangle \mathrm{ABC}$において,$\displaystyle \frac{8}{\sin A}=\frac{7}{\sin B}=\frac{5}{\sin C}$である.このとき,$\angle \mathrm{B}$の大きさを求めよ.
(5)方程式$|x^2-2|=x$の解を求めよ.
天使大学 私立 天使大学 2015年 第1問
次の問いに答えなさい.

(1)方程式$27x^3-54x^2-12x+24=0$を解きなさい.
\[ x=\frac{\mkakko{$\mathrm{a}$}}{\mkakko{$\mathrm{b}$}},\ \frac{\mkakko{$\mathrm{c}$}}{\mkakko{$\mathrm{d}$}},\ \mkakko{$\mathrm{e}$} \qquad \text{ただし} \mkakko{$\mathrm{a}$} \text{と} \mkakko{$\mathrm{b}$} \text{と} \mkakko{$\mathrm{d}$} \text{は正の数である.}\]
(2)$x,\ y,\ z$が$\displaystyle x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1$をみたすとき,$(x+y)(y+z)(z+x)$の値を求めなさい.
\[ (x+y)(y+z)(z+x)=\mkakko{$\mathrm{f}$} \]
(3)関数$f(x)=|x+1|+|x-1|+|x-2|$の最小値$m$と,最小値をとるときの$x$の値を求めなさい.
\[ x=\mkakko{$\mathrm{g}$} \text{のとき} m=\mkakko{$\mathrm{h}$} \text{である.} \]
(4)$a$を正の定数とする.関数$y=x^2+ax-a^2-3a+1$の$-2a \leqq x \leqq 2a$での最大値$M$を最小にする定数$a$の値と$M$の最小値$m$の値を求めなさい.
\[ a=\frac{\mkakko{$\mathrm{i}$}}{\mkakko{$\mathrm{j}$} \mkakko{$\mathrm{k}$}} \text{のとき,} m=\frac{\mkakko{$\mathrm{l}$} \mkakko{$\mathrm{m}$}}{\mkakko{$\mathrm{n}$} \mkakko{$\mathrm{o}$}} \text{である.} \]
ただし$\mkakko{$\mathrm{j}$}$と$\mkakko{$\mathrm{n}$}$は正の数である.
西南学院大学 私立 西南学院大学 2015年 第1問
以下の問に答えよ.

(1)$2$次不等式$ax^2+8x+b>0$の解が$-1<x<5$であるとき,$a=[アイ]$,$b=[ウエ]$である.
(2)$y=|x^2+x-2|+x+1$の$-3 \leqq x \leqq 1$における最大値は$[オ]$,最小値は$[カキ]$である.
広島文化学園大学 私立 広島文化学園大学 2015年 第1問
次の問いに答えよ.

(1)$(x^2+2x+3)(x^2-2x+3)$を展開せよ.
(2)$x^2-4ax-5a^2$を因数分解せよ.
(3)$\displaystyle x=\frac{1}{\sqrt{3}+2},\ y=\frac{1}{\sqrt{3}-2}$のとき,式$x^2+y^2$の値を求めよ.
(4)$|3x+1| \geqq 2$を解け.
(5)集合$A$を$1$から$12$までの自然数の集合,集合$B$を素数全体の集合とするとき,$A \cap B$の要素を書き並べて表せ.
(6)次の$[ ]$にあてはまるものとして,「必要条件である」,「十分条件である」,「必要十分条件である」,「必要条件でも十分条件でもない」のうち,最も適切なものを選べ.
$x^2=16$は$x=4$であるための$[ ]$.
(7)$\displaystyle \sin \theta=\frac{3}{\sqrt{13}}$であるとき,$\cos^2 \theta-\sin^2 \theta$の値を求めよ.
(8)$\triangle \mathrm{ABC}$において,$\angle \mathrm{A}={135}^\circ$,$\mathrm{AB}=2$,$\mathrm{AC}=\sqrt{2}$のとき,$\mathrm{BC}$を求めよ.
西南学院大学 私立 西南学院大学 2015年 第5問
実数$a$の関数$F(a)$が
\[ F(a)=\int_0^1 |x(x-a)| \, dx \]
で与えられているとき,以下の問に答えよ.

(1)$a>0$のとき,$xy$平面上に$y=|x(x-a)|$のグラフを描け.
(2)$F(a)$を求めよ.
(3)$ab$平面上に$b=F(a)$のグラフを描け.
(4)$F(a)$の最小値と,そのときの$a$の値を求めよ.
スポンサーリンク

「絶対値」とは・・・

 まだこのタグの説明は執筆されていません。