タグ「範囲」の検索結果

28ページ目:全1424問中271問~280問を表示)
奈良女子大学 国立 奈良女子大学 2015年 第4問
$a,\ b$を実数とする.$f(x)=x^2-6x+a$,$g(x)=-x^2+9x+b$とする.次の問いに答えよ.

(1)さいころを$1$個投げて出た目を$k$とするとき$f(k) \leqq 0$となる確率が$\displaystyle \frac{1}{2}$である$a$のとり得る値の範囲を求めよ.
(2)さいころを$1$個投げて出た目を$k$とするとき$f(k) \leqq 0$かつ$g(k) \geqq 0$となる確率が$\displaystyle \frac{1}{2}$である$a,\ b$のとり得る値の範囲を求めよ.
奈良女子大学 国立 奈良女子大学 2015年 第5問
原点を中心とする半径$1$の円$C$と,点$\mathrm{A}(2,\ 0)$を中心とする半径$1$の円$C_1$がある.円$C$上の点$\mathrm{P}(\cos \theta,\ \sin \theta)$をとり,$\mathrm{P}$を中心とする半径$1$の円を$C_2$とする.次の問いに答えよ.

(1)円$C_1$と円$C_2$が異なる$2$点で交わるとき,$\cos \theta$のとり得る値の範囲を求めよ.
(2)円$C_1$と円$C_2$が異なる$2$点で交わるとき,その$2$点と点$\mathrm{P}$を頂点とする三角形の面積を$S$とする.以下の$(ⅰ)$,$(ⅱ)$に答えよ.

(i) $S$を$\theta$を用いて表せ.
(ii) $S$の最大値を求めよ.
宮崎大学 国立 宮崎大学 2015年 第4問
$a \geqq 0$,$b \geqq 0$とする.このとき,変数$x$の関数
\[ f(x)=\cos 2x \cos x+2a \sin 2x-2 \cos 2x-8a \sin x-(b+1) \cos x+2(b+1) \]
について,次の各問に答えよ.

(1)$X=\sin x,\ Y=\cos x$とおくとき,
\[ f(x)=(Y-[ア])(-[イ]X^2+[ウ]X-b) \]
と表せる.ア,イ,ウに入る数,または$a,\ b$を用いた文字式を求めよ.
(2)方程式$f(x)=0$が$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$の範囲内に少なくとも$1$つの解をもつようなすべての$a,\ b$を座標平面上の点$(a,\ b)$として図示せよ.
宮崎大学 国立 宮崎大学 2015年 第2問
$a \geqq 0$,$b \geqq 0$とする.このとき,変数$x$の関数
\[ f(x)=\cos 2x \cos x+2a \sin 2x-2 \cos 2x-8a \sin x-(b+1) \cos x+2(b+1) \]
について,次の各問に答えよ.

(1)$X=\sin x,\ Y=\cos x$とおくとき,
\[ f(x)=(Y-[ア])(-[イ]X^2+[ウ]X-b) \]
と表せる.ア,イ,ウに入る数,または$a,\ b$を用いた文字式を求めよ.
(2)方程式$f(x)=0$が$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$の範囲内に少なくとも$1$つの解をもつようなすべての$a,\ b$を座標平面上の点$(a,\ b)$として図示せよ.
宮崎大学 国立 宮崎大学 2015年 第3問
曲線$C:y=|x^2-6x|$と直線$\ell:y=kx$($k$は実数)について,次の各問に答えよ.

(1)曲線$C$を座標平面上に図示せよ.
(2)曲線$C$と直線$\ell$が異なる$3$つの共有点をもつような$k$の値の範囲を求めよ.
(3)$(2)$のとき,曲線$C$と直線$\ell$で囲まれた$2$つの部分の面積の和が最小になるような$k$の値を求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2015年 第3問
次の問いに答えよ.

(1)不等式
\[ \sqrt{n} \sqrt{a^2+b^2} \leqq a+b \leqq \sqrt{m} \sqrt{a^2+b^2} \]
がすべての負でない実数$a \geqq 0$,$b \geqq 0$に対して成り立つような自然数$m$と$n$の範囲を求めよ.
(2)$m$を$2$以上の自然数,$n$を自然数とする.不等式
\[ \frac{m^{n+1}-1}{n+1}>\frac{m^n-1}{n} \]
が成り立つことを示せ.
(3)$m$を$2$以上の自然数,$n$を自然数とするとき,次の不等式
\[ \comb{mn}{n} \geqq m^n>\sum_{i=0}^{n-1}m^i \]
が成り立つことを示せ.
浜松医科大学 国立 浜松医科大学 2015年 第2問
整数ではない実数$x$に対して$\displaystyle f(x)=\frac{1}{x-[x]}$と定める.ただし,$[x]$は$l<x<l+1$を満たす整数$l$を表す.以下の問いに答えよ.

(1)$f(\sqrt{2}),\ f(f(\sqrt{2}))$を計算し,簡潔な形で答えよ.
(2)$f(\sqrt{3}),\ f(f(\sqrt{3})),\ f(f(f(\sqrt{3})))$を計算し,簡潔な形で答えよ.
(3)自然数$n$に対して,$n<x<n+1$かつ$f(x)=x$を満たす$x$を求めよ.
(4)自然数$n$を$1$つ固定する.$n<x<n+1$の範囲の$x$で,$f(x)$が整数ではなく,さらに$f(f(x))=x$を満たす$x$を大きい順に並べる.その中の$x$で$f(x)=x$を満たすものは何番目に現れるかを答えよ.
筑波大学 国立 筑波大学 2015年 第1問
以下の問いに答えよ.

(1)座標平面において,次の連立不等式の表す領域を図示せよ.
\[ \left\{ \begin{array}{l}
x^2+y \leqq 1 \\
x-y \leqq 1
\end{array} \right. \]
(2)$2$つの放物線$y=x^2-2x+k$と$y=-x^2+1$が共有点をもつような実数$k$の値の範囲を求めよ.
(3)$x,\ y$が$(1)$の連立不等式を満たすとき,$y-x^2+2x$の最大値および最小値と,それらを与える$x,\ y$の値を求めよ.
宮崎大学 国立 宮崎大学 2015年 第4問
$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{6}$を満たす$\theta$について,$r(\theta)=\sqrt{2 \cos 2\theta}$とするとき,座標平面上で円$x^2+y^2=\{r(\theta)\}^2$と直線$y=(\tan \theta)x$は$2$つの交点をもつ.そのうち,$x$座標が正であるものを$\mathrm{P}$とし,$\mathrm{P}$の$x$座標を$f(\theta)$,$y$座標を$g(\theta)$とする.$\theta$を$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{6}$の範囲で動かしたときの点$\mathrm{P}$の軌跡を$C$とする.このとき,次の各問に答えよ.

(1)$f(\theta),\ g(\theta)$を求めよ.
(2)$g(\theta)$の最大値を求めよ.
(3)曲線$C$と$x$軸,直線$\displaystyle x=f \left( \frac{\pi}{6} \right)$で囲まれた部分の面積を求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2015年 第1問
座標平面上に点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(1,\ 0)$,$\mathrm{B}(-1,\ 0)$,$\mathrm{C}(0,\ 2)$,$\mathrm{D}(0,\ 1)$をとる.直線$x=1$を$\ell$,直線$x=-1$を$m$とする.また,$x$軸上に$\mathrm{O}$と異なる点$\mathrm{P}(t,\ 0)$をとり,直線$\mathrm{CP}$と直線$\ell$の交点を$\mathrm{Q}(1,\ u)$,直線$\mathrm{DP}$と直線$m$の交点を$\mathrm{R}(-1,\ v)$とおく.以下の問いに答えよ.

(1)$u,\ v$を$t$を用いて表せ.
(2)$u,\ v$が共に正となるような$t$の範囲と,そのときの台形$\mathrm{QABR}$の面積のとり得る値の範囲を求めよ.
(3)線分$\mathrm{QR}$は$t$に依存しないある定点$\mathrm{E}$を通ることを示せ.また,$\mathrm{E}$の座標を求めよ.
スポンサーリンク

「範囲」とは・・・

 まだこのタグの説明は執筆されていません。