タグ「等比数列」の検索結果

2ページ目:全103問中11問~20問を表示)
慶應義塾大学 私立 慶應義塾大学 2016年 第2問
以下の条件で定められる数列$\{a_n\}$がある.
\[ a_1=\frac{1}{10},\quad a_{n+1}=\frac{1}{100}a_n+\frac{1}{10} \quad (n=1,\ 2,\ 3,\ \cdots) \]

(1)$\{a_n\}$の階差数列$\{b_n\}$を$b_n=a_{n+1}-a_n (n=1,\ 2,\ 3,\ \cdots)$で定める.$\{b_n\}$は等比数列で,初項を$\displaystyle \frac{1}{{10}^p}$,公比を$\displaystyle \frac{1}{{10}^q}$とおくと,$p=[$13$]$,$q=[$14$]$となる.ゆえに,$\{b_n\}$の第$n$項を
\[ b_n=\frac{1}{{10}^{rn+s}} \quad (n=1,\ 2,\ 3,\ \cdots) \]
とおくと,$r=[$15$]$,$s=[$16$]$となる.さらに,$\{a_n\}$の第$n$項は,
\[ a_n=a_1+\sum_{k=[$17$]}^{n+[$18$][$19$]} b_k=\frac{\displaystyle\frac{1}{{10}^t} \left( 1-\frac{1}{{10}^{un}} \right)}{1-\displaystyle\frac{1}{{10}^v}} \quad (n=2,\ 3,\ 4,\ \cdots) \]
と求められる.ここで,$t=[$20$]$,$u=[$21$]$,$v=[$22$]$である.
(2)$\displaystyle S_n=\sum_{k=1}^n \frac{1}{{10}^{2k} a_k a_{k+1}} \quad (n=1,\ 2,\ 3,\ \cdots)$とおく.関係式
\[ \frac{b_k}{a_k a_{k+1}}=\frac{[$23$][$24$]}{a_k}+\frac{[$25$][$26$]}{a_{k+1}} \quad (k=1,\ 2,\ 3,\ \cdots) \]
を用いて計算すると,
\[ S_n=\frac{{10}^w \left( 1-\displaystyle\frac{1}{{10}^{xn}} \right)}{1-\displaystyle\frac{1}{{10}^{yn+z}}} \]
となる.ここで,$w=[$27$]$,$x=[$28$]$,$y=[$29$]$,$z=[$30$]$である.
(3)$({100}^{n+1}-1)S_n$は$[$31$]n+[$32$][$33$]$桁の整数になる.
立教大学 私立 立教大学 2016年 第3問
実数$c$を$\displaystyle c<\frac{3}{2}$とし,$f(x)=(x-4)(x^2-3x-c^2+3c)$とする.このとき,次の問いに答えよ.

(1)曲線$y=f(x)$と$x$軸が異なる$3$点で交わり,それら$3$つの交点の$x$座標がすべて正となるときの$c$の値の範囲を求めよ.
(2)$(1)$の$3$つの交点の$x$座標を小さい順に並べると等差数列となるときの$c$の値を求めよ.また,このときの交点の$x$座標をすべて求めよ.
(3)$(1)$の$3$つの交点の$x$座標を小さい順に並べると等比数列となるときの$c$の値を求めよ.また,このときの交点の$x$座標をすべて求めよ.
(4)$(2)$の場合の曲線$y=f(x)$を$C_1$とし,$(2)$の場合の曲線$y=f(x)$を$C_2$とする.曲線$C_1,\ C_2$と,$y$軸で囲まれた図形の面積を求めよ.
広島工業大学 私立 広島工業大学 2016年 第1問
次の問いに答えよ.

(1)$a,\ b$は実数とする.$3$次方程式$x^3+x^2+ax+b=0$が$1+i$を解にもつとき,$a,\ b$の値を求めよ.また他の解を求めよ.
(2)関数$y=\cos^2 \theta-4 \sin \theta+7$の最大値と最小値を求めよ.ただし,$0 \leqq \theta \leqq \pi$とする.
(3)初項$\displaystyle \frac{2}{3}$,公比$\displaystyle \frac{1}{3}$の等比数列$\{a_n\}$を考える.初項から第$n$項までの和$S_n$が$0.998$を超える最小の自然数$n$を求めよ.
埼玉工業大学 私立 埼玉工業大学 2016年 第1問
次の$[ ]$にあてはまるものを記入せよ.

(1)整式$P(x)$を$(x+1)^3$で割ったときの余りが$x^2-x+1$のとき,$P(x)$を$(x+1)^2$で割った余りは,$[アイ]x$である.

(2)無限級数$\displaystyle \sum_{n=1}^\infty \left\{ \left( \frac{1}{2} \right)^n+\left( \frac{1}{3} \right)^n \right\}$の和は,$\displaystyle \frac{[ウ]}{[エ]}$である.

(3)正の整数$a,\ b$について,$a$を$5$で割ると余りが$2$,$b$を$5$で割ると余りが$3$である.積$ab$を$5$で割ったとき,余りは$[オ]$となる.
(4)$3$つの数$4,\ a,\ b$は,この順に等差数列をなし,$a,\ b,\ 4$は,この順に等比数列をなす.このとき$a=[カ]$,$b=[キク]$である.ただし,$a$と$b$は等しくないとする.
九州歯科大学 公立 九州歯科大学 2016年 第1問
次の問いに答えよ.

(1)$5 \sin \theta \cos \theta=2$のとき,$\displaystyle A=\tan \theta+\frac{1}{\tan \theta}$,$B=(\sin \theta)^4+(\cos \theta)^4$,$C=(\sin \theta)^8+(\cos \theta)^8$の値を求めよ.
(2)等比数列$\{a_n\}$の初項を$a_1=\alpha$,公比を$r$とする.自然数$n$に対して,$b_n=\log_3 a_n$とおく.数列$\{b_n\}$が初項$b_1=4$,公差$d=-2$の等差数列となるとき,$\alpha$と$r$の値を求めよ.また,$\displaystyle \beta=8 \sum_{n=1}^{\infty} a_n$の値を求めよ.ただし,$\alpha>0$,$r>0$とする.
(3)定積分$\displaystyle I=\int_{-2}^3 (3 \sqrt{x^4-6x^2+9}-4x) \, dx$の値を求めよ.
県立広島大学 公立 県立広島大学 2016年 第1問
数列$\{a_n\}$の初項を$a \neq 0$とし,初項から第$n$項までの和を
\[ S_n=a_1+a_2+\cdots +a_n \]
とする.また,数列$\{b_n\}$を
\[ b_n=2a_n+\frac{3}{2}a-S_n \quad (n=1,\ 2,\ 3,\ \cdots) \]
で定める.このとき,次の問いに答えよ.

(1)数列$\{b_n\}$の初項$b$を$a$を用いて表せ.
(2)数列$\{a_n\}$が公比$\displaystyle \frac{1}{3}$の等比数列ならば,数列$\{b_n\}$も等比数列になることを示せ.
(3)数列$\{b_n\}$が公比$\displaystyle \frac{1}{3}$の等比数列ならば,数列$\{a_n\}$も等比数列になることを示せ.
埼玉大学 国立 埼玉大学 2015年 第3問
数列$\{a_n\}$は初項が$4$で,$A,\ B$をある定数として
\[ a_{n+1}=\frac{Aa_n+B}{a_n+2} \quad (n=1,\ 2,\ 3,\ \cdots) \]
で与えられている.数列$\{b_n\}$は等比数列であり,関係式
\[ a_nb_n-a_n+b_n+3=0 \quad (n=1,\ 2,\ 3,\ \cdots) \]
をみたす.このとき下記の設問に答えよ.

(1)$A,\ B$を求めよ.
(2)数列$\{b_n\}$の一般項を求めよ.
(3)数列$\{a_n\}$の一般項を求めよ.
埼玉大学 国立 埼玉大学 2015年 第1問
$c$は実数とする.数列$a_1,\ a_2,\ a_3,\ \cdots$は$a_1=1$,$a_2=c$であり,さらに漸化式
\[ a_{n+2}=a_{n+1}+a_n \quad (n=1,\ 2,\ 3,\ \cdots) \]
を満たすとする.次の問いに答えよ.

(1)$a_3={a_2}^2$が成り立つような$c$の値を求めよ.
(2)$c$が$(1)$で求めた値のとき,数列$a_1,\ a_2,\ a_3,\ \cdots$が等比数列であることを数学的帰納法を用いて示せ.
(3)$(1)$で求めた$c$の値のうち,$\displaystyle \lim_{n \to \infty}a_n=0$となるものを求めよ.
(4)$c$が$(3)$で求めた値のとき,$\displaystyle \sum_{n=1}^\infty a_n$を求めよ.
愛媛大学 国立 愛媛大学 2015年 第1問
次の問いに答えよ.

(1)$\displaystyle \left( \frac{1+\sqrt{5}}{2} \right)^3$からその整数部分を引いた値を$a$とするとき,$a^2+4a+5$の値を求めよ.
(2)次の連立方程式を解け.
\[ \left\{ \begin{array}{l}
\log_2x-\log_2y=1 \\
x \log_2 x-y \log_2 y=0
\end{array} \right. \]
(3)$s,\ t$を実数とする.座標空間内の同一平面上にある$4$点$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{A}(4,\ s,\ t)$,$\mathrm{B}(2,\ 3,\ 2)$,$\mathrm{C}(0,\ 5,\ 1)$が$\angle \mathrm{AOB}={90}^\circ$をみたすとき,$s,\ t$の値を求めよ.
(4)初項が$3$,公比が$4$である等比数列の第$k$項を$a_k$とする.このとき,$\displaystyle \sum_{k=n}^{n^2}a_k$を求めよ.
群馬大学 国立 群馬大学 2015年 第5問
$p$は素数とし,$m,\ n$は整数で$m \neq 0$とする.$n,\ p-m,\ m+n$がこの順で等差数列になり,$p-m,\ n,\ p+m$がこの順で等比数列になるとき,$p,\ m,\ n$を求めよ.
スポンサーリンク

「等比数列」とは・・・

 まだこのタグの説明は執筆されていません。