タグ「等式」の検索結果

9ページ目:全278問中81問~90問を表示)
東京都市大学 私立 東京都市大学 2015年 第1問
次の$[ ]$を埋めよ.

(1)$\log_2 104+\log_2 (27+2+2)-\log_2(2015 \times 2 \div 10)$の値は$[ア]$である.
(2)実数$x,\ y$が等式$(2+xi)(5+i)=3y-8i$を満たすとき,$x=[イ]$,$y=[ウ]$である.ただし,$i$は虚数単位とする.
(3)整式$P(x)=x^4$を$x-2$で割ると商が$[エ]$,余りが$[オ]$となる.$P(x)$を$(x-2)^2$で割ると商が$[カ]$,余りが$[キ]$となる.
(4)$3$次方程式$\displaystyle \frac{2}{3}x^3-ax^2+a=0$が異なる$3$個の実数解をもつとき,実数の定数$a$の値の範囲は$[ク]$である.
(5)自然数$n$に対して$a_n=2^{-n}$,$\displaystyle b_n=\int_{a_{n+1}}^{a_n} x \, dx$,$\displaystyle c_n=\sum_{k=1}^n b_k$と定義する.$b_n$を$n$の式で表すと$b_n=[ケ]$となるので,数列$\{b_n\}$は初項$[コ]$,公比$[サ]$の等比数列といえる.また,$c_n$を$n$の式で表すと$c_n=[シ]$となるので,数列$\{c_n\}$の和$\displaystyle S_n=\sum_{k=1}^n c_k$を$n$の式で表すと$\displaystyle S_n=[ス]$となる.
(6)$1$個のさいころを$4$回続けて投げるとする.$4$回とも同じ目が出る確率は$[セ]$であり,$1$から$4$までの目がそれぞれ$1$回ずつ出る確率は$[ソ]$である.また,出る目が$1$と$2$の$2$種類になる確率は$[タ]$であり,出る目が$1$から$6$までのいずれか$2$種類になる確率は$[チ]$である.
(7)$3$点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(6,\ 3)$,$\mathrm{B}(2,\ 4)$を頂点とする$\triangle \mathrm{OAB}$に対し,$\overrightarrow{\mathrm{OP}}=s \overrightarrow{\mathrm{OA}}+t \overrightarrow{\mathrm{OB}}$とする.実数$s,\ t$が条件$\displaystyle 0 \leqq s+t \leqq \frac{1}{2}$,$s \geqq 0$,$t \geqq 0$を満たしながら動くとき,点$\mathrm{P}$の存在範囲が$\triangle \mathrm{OA}^\prime \mathrm{B}^\prime$の周および内部であるとすると,点$\mathrm{A}^\prime$の座標は$[ツ]$,点$\mathrm{B}^\prime$の座標は$[テ]$である.ただし,点$\mathrm{A}^\prime$は直線$\mathrm{OA}$上,点$\mathrm{B}^\prime$は直線$\mathrm{OB}$上にあるものとする.また,$3$点$\mathrm{O}(0,\ 0)$,$\displaystyle \mathrm{C} \left( 9,\ \frac{9}{2} \right)$,$\mathrm{D}(3,\ 6)$を頂点とする$\triangle \mathrm{OCD}$に対し,$\overrightarrow{\mathrm{OQ}}=s^\prime \overrightarrow{\mathrm{OC}}+t^\prime \overrightarrow{\mathrm{OD}}$とする.点$\mathrm{Q}$の存在範囲が点$\mathrm{P}$の存在範囲と一致するとき,実数$s^\prime$と$t^\prime$の満たす条件は$[ト]$である.
(8)絶対値の記号を用いずに関数$f(x)=|3x^2-3x|-1$を表すと,$0 \leqq x \leqq 1$のとき$f(x)=[ナ]$となり,$x \leqq 0$,$1 \leqq x$のとき$f(x)=[ニ]$となる.したがって,定積分$\displaystyle \int_0^a f(x) \, dx$の値は,$0 \leqq a \leqq 1$のとき$[ヌ]$,$1 \leqq a$のとき$[ネ]$となる.
山口東京理科大学 私立 山口東京理科大学 2015年 第7問
等式
\[ 3^{3x-1}=\sqrt{27} \]
を満たす$x$の値は$\displaystyle x=\frac{[フ]}{[ヘ]}$である.
同志社大学 私立 同志社大学 2015年 第5問
(選択)行列$A$を
\[ A=\left( \begin{array}{cc}
1 & \sqrt{3} \\
\sqrt{3} & -1
\end{array} \right) \]
とする.次の問いに答えよ.

\mon[$(1)$] 行列$A$の表す$1$次変換が点$(2,\ 1)$を点$\mathrm{P}_1$に移すとする.$\mathrm{P}_1$の座標を求めよ.
\mon[$(2)$] 次の等式が成立する実数$k,\ t$の組をすべて求めよ.
\[ A \left( \begin{array}{c}
1 \\
t
\end{array} \right)=\left( \begin{array}{c}
k \\
kt
\end{array} \right) \]
\mon[$(3)$] $A^2$を求めよ.
\mon[$(4)$] 行列$A^n (n=1,\ 2,\ 3,\ \cdots)$の表す$1$次変換が点$(2,\ 1)$を点$\mathrm{P}_n$に移すとする.$\mathrm{P}_{2m-1} (m=1,\ 2,\ 3,\ \cdots)$の座標を求めよ.
藤田保健衛生大学 私立 藤田保健衛生大学 2015年 第3問
$n$を$3$以上の整数とする.$(x-1)^2P(x)+ax+b=x^n+x^{n-1}+\cdots +x+1$が成り立っているとする.ただし$P(x)$は$x$の整式とし,$a,\ b$は定数であるとする.この等式の左辺を微分すると$[$6$]$である.このとき$(a,\ b)=[$7$]$である.
千葉工業大学 私立 千葉工業大学 2015年 第3問
次の各問に答えよ.

(1)$\displaystyle f(x)=|\displaystyle\frac{7|{2}x-3}-x$とする.方程式$f(x)=0$の解は,小さい順に,$\displaystyle x=\frac{[ア]}{[イ]}$,$\displaystyle \frac{[ウ]}{[エ]}$である.

折れ線$L:y=|f(x)|$と直線$y=k$(ただし,$k$は定数)がちょうど$3$点を共有するのは$\displaystyle k=\frac{[オ]}{[カ]}$のときであり,$L$と直線$y=mx-1$(ただし,$m$は定数)がちょうど$3$点を共有するのは$\displaystyle m=\frac{[キ]}{[ク]},\ \frac{[ケコ]}{[サ]}$のときである.

(2)三角形$\mathrm{ABC}$の内部の点$\mathrm{P}$に対して,等式$\overrightarrow{\mathrm{AP}}+5 \overrightarrow{\mathrm{BP}}+4 \overrightarrow{\mathrm{CP}}=k \overrightarrow{\mathrm{AB}}$(ただし,$k$は実数)が成り立つ.このとき,
\[ \overrightarrow{\mathrm{AP}}=\frac{k+[シ]}{[スセ]} \overrightarrow{\mathrm{AB}}+\frac{[ソ]}{[タ]} \overrightarrow{\mathrm{AC}} \]
である.直線$\mathrm{AP}$と辺$\mathrm{BC}$との交点$\mathrm{Q}$が$\mathrm{BC}$を$3:2$に内分するとき,
\[ \overrightarrow{\mathrm{AP}}=\frac{[チ]}{[ツ]} \overrightarrow{\mathrm{AQ}},\quad k=\frac{[テト]}{[ナ]} \]
である.
公立はこだて未来大学 公立 公立はこだて未来大学 2015年 第2問
以下の問いに答えよ.

(1)正弦,余弦に関する加法定理
\[ \left\{ \begin{array}{l}
\sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta \\
\cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta \phantom{\frac{[ ]}{2}}
\end{array} \right. \]
を用いて等式
\[ \sin 3x=3 \sin x-4 \sin^3 x \]
を証明せよ.
(2)関数$y=\sin 3x+3 \cos 2x+6 \sin x (0 \leqq x<2\pi)$の最大値と最小値,およびそのときの$x$の値をすべて求めよ.
富山県立大学 公立 富山県立大学 2015年 第3問
次の問いに答えよ.

(1)等式$\sin 3\theta=3 \sin \theta-4 \sin^3 \theta$が成り立つことを示せ.
(2)方程式$8x^3-6x+1=0$が$\displaystyle \sin \frac{\pi}{18}$を解にもつことを示せ.
(3)方程式$8x^3-6x+1=0$のすべての解が実数であることを示せ.
広島市立大学 公立 広島市立大学 2015年 第2問
次の問いに答えよ.

(1)等式$\displaystyle \sin \frac{2}{5} \pi=\sin \frac{3}{5} \pi$が成り立つことを示せ.

(2)$\displaystyle a=\frac{\sin 2\theta}{\sin \theta},\ b=\frac{\sin 3\theta}{\sin \theta}$とおく.$\cos \theta=t$とするとき,$a$と$b$をそれぞれ$t$の整式として表せ.ただし,$0<\theta<\pi$とする.

(3)$\displaystyle \cos \frac{\pi}{5}$の値を求めよ.
高知工科大学 公立 高知工科大学 2015年 第1問
次の各問に答えよ.

(1)$f(x)=|2x+3|$のとき$f(-3)+f(0)+f(3)$の値を求めよ.
(2)方程式$\log_2 (x-1)+\log_2 (x+2)=2$を解け.
(3)$\left\{ \begin{array}{l}
\sin x+\cos y=1 \\
\cos x+\sin y=\displaystyle\frac{1}{2}
\end{array} \right.$のとき$\sin (x+y)$の値を求めよ.
(4)$a,\ b,\ x$を実数とする.命題
\[ x^2-(a+b)x+ab \leqq 0 \Longrightarrow x^2<2x+3 \]
が真となるような定数$a,\ b$の満たすべき条件を求めよ.ただし,$a \leqq b$とする.
(5)$a$を定数とし,関数$y=f(x)$は$x=a$で微分可能であるとする.このとき,極限値
\[ \lim_{h \to 0} \frac{f(a+3h)-f(a-2h)}{h} \]
を$f^\prime(a)$を用いて表せ.
(6)関数$f(x)=\log | \cos x |$の導関数を求めよ.
(7)$2$つの曲線$y=\log x$と$y=ax^2$とがただ$1$つの共有点をもつような正の定数$a$の値を求めよ.
(8)等式$\displaystyle \lim_{x \to 1} \frac{\sqrt{2x^2+a}-x-1}{(x-1)^2}=b$が成り立つような定数$a,\ b$の値を求めよ.
会津大学 公立 会津大学 2015年 第6問
$n$を自然数とするとき,以下の問いに答えよ.

(1)次の等式を示せ.
\[ \comb{n+2}{3}+\comb{n+2}{2}=\comb{n+3}{3} \]
(2)$(1)$の結果を利用して,数学的帰納法により,次の等式を証明せよ.
\[ \sum_{i=1}^n \comb{i+1}{2}=\comb{n+2}{3} \]
スポンサーリンク

「等式」とは・・・

 まだこのタグの説明は執筆されていません。