タグ「空欄補充」の検索結果

68ページ目:全1740問中671問~680問を表示)
大阪工業大学 私立 大阪工業大学 2014年 第2問
円$C:x^2+y^2=20$と直線$y=2x$の第$1$象限にある共有点を$\mathrm{P}$とし,$x$軸に関して点$\mathrm{P}$と対称な点を$\mathrm{Q}$とする.このとき,次の空所を埋めよ.

(1)点$\mathrm{P}$の座標は$([ア],\ [イ])$であり,点$\mathrm{Q}$の座標は$([ウ],\ [エ])$である.
(2)円$C$の点$\mathrm{P}$における接線$\ell$の方程式は$[オ]$である.
(3)$(2)$で求めた接線$\ell$と$x$軸の共有点$\mathrm{M}$の$x$座標は$[カ]$である.
(4)$\overrightarrow{\mathrm{MP}} \cdot \overrightarrow{\mathrm{MQ}}=[キ]$であり,$|\overrightarrow{\mathrm{MP}}|=[ク]$である.また,$\cos \angle \mathrm{PMQ}=[ケ]$である.
大阪工業大学 私立 大阪工業大学 2014年 第3問
数列$\{a_n\}$が$a_1=1$,$a_{n+1}=a_n(a_n+2) (n=1,\ 2,\ 3,\ \cdots)$で定義されるとき,次の空所を埋めよ.

(1)$b_n=a_n+1$とおくと,$b_1=[ア]$であり,$b_3=[イ]$である.また,$b_{n+1}$を$b_n$を用いて表すと,$b_{n+1}=[ウ]$となる.
(2)$c_n=\log_2b_n$とおくと,数列$\{c_n\}$は初項$[エ]$,公比$[オ]$の等比数列である.
(3)$c_8=[カ]$だから,$a_8$は$[キ]$桁の整数である.ただし,$\log_{10}2=0.3010$とする.
大阪工業大学 私立 大阪工業大学 2014年 第2問
円$C:x^2+y^2=20$と直線$y=2x$の第$1$象限にある共有点を$\mathrm{P}$とし,$x$軸に関して点$\mathrm{P}$と対称な点を$\mathrm{Q}$とする.このとき,次の空所を埋めよ.

(1)点$\mathrm{P}$の座標は$([ア],\ [イ])$であり,点$\mathrm{Q}$の座標は$([ウ],\ [エ])$である.
(2)円$C$の点$\mathrm{P}$における接線$\ell$の方程式は$[オ]$である.
(3)$(2)$で求めた接線$\ell$と$x$軸の共有点$\mathrm{M}$の$x$座標は$[カ]$である.
(4)$\overrightarrow{\mathrm{MP}} \cdot \overrightarrow{\mathrm{MQ}}=[キ]$であり,$|\overrightarrow{\mathrm{MP}}|=[ク]$である.また,$\cos \angle \mathrm{PMQ}=[ケ]$である.
金沢工業大学 私立 金沢工業大学 2014年 第1問
次の問いに答えよ.

(1)$p=(\sqrt{3}+\sqrt{5})^2$,$q=(\sqrt{3}-\sqrt{5})^2$のとき$p+q=[アイ]$,$pq=[ウ]$,$p^2+q^2=[エオカ]$である.

(2)連立不等式$\left\{ \begin{array}{r}
|2x-9| \leqq 5 \\
9-2x \leqq 4
\end{array} \right.$の解は$\displaystyle \frac{[キ]}{[ク]} \leqq x \leqq [ケ]$である.

(3)$(2x-1)^5(y-2)^4$の展開式における$x^2y^3$の項の係数は$[コサシ]$である.
(4)${0}^\circ<\theta<{90}^\circ$で,$\displaystyle \tan \theta=\frac{4}{3}$のとき,
\[ \frac{\sin (\theta+{90}^\circ)+\tan (\theta+{90}^\circ)}{\sin ({180}^\circ-\theta)+\tan ({180}^\circ-\theta)}=\frac{[ス]}{[セソ]} \]
である.
(5)$p,\ q$を定数とし,$q<0$とする.$2$次関数$y=px^2+qx+2q$のグラフの頂点の座標が$(-4q,\ -40)$のとき,$\displaystyle p=\frac{[タ]}{[チ]}$,$q=[ツテ]$である.
(6)赤玉が$5$個,白玉が$3$個入っている袋がある.この袋の中から玉を同時に$2$個取り出すとき,少なくとも$1$個が白玉である確率は$\displaystyle \frac{[ト]}{[ナニ]}$である.
(7)$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の$3$個のさいころを同時に投げて,それぞれの出る目を$a,\ b,\ c$とする.このとき,積$abc$が奇数になる組$(a,\ b,\ c)$は$[ヌネ]$組あり,偶数になる組$(a,\ b,\ c)$は$[ノハヒ]$組ある.
(8)$\triangle \mathrm{ABC}$において,$\mathrm{AP}:\mathrm{PB}=\mathrm{AQ}:\mathrm{QC}=1:3$となるように点$\mathrm{P}$を辺$\mathrm{AB}$上に,点$\mathrm{Q}$を辺$\mathrm{AC}$上にとる.線分$\mathrm{BQ}$と線分$\mathrm{CP}$の交点を$\mathrm{R}$とすると,$\displaystyle \triangle \mathrm{PQR}=\frac{[フ]}{[ヘホ]} \triangle \mathrm{BCR}$である.
近畿大学 私立 近畿大学 2014年 第1問
次の問いに答えよ.

(1)$\displaystyle \sin \theta \cos \theta=\frac{1}{8}$とする.ただし$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{4}$とする.

(i) $\displaystyle \sin \theta+\cos \theta=\frac{\sqrt{[ア]}}{[イ]}$,$\displaystyle \sin \theta-\cos \theta=-\frac{\sqrt{[ウ]}}{[エ]}$である.
(ii) $\displaystyle \cos 2\theta=\frac{\sqrt{[オカ]}}{[キ]}$,$\tan \theta=[ク]-\sqrt{[ケコ]}$である.

(2)$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$,$\mathrm{E}$の$5$チームがあり,それぞれのチームは他のチームと$1$回ずつ試合をする.$2$つのチームが対戦するときの勝敗の確率は$\displaystyle \frac{1}{2}$とし,引き分けはないものとする.

(i) 試合は全部で$[サシ]$試合行われる.
(ii) $4$敗のチームが現れる確率は$\displaystyle \frac{[ス]}{[セソ]}$である.
(iii) $3$勝$1$敗のチームがちょうど$3$チーム現れる確率は$\displaystyle \frac{[タ]}{[チツテ]}$である.
近畿大学 私立 近畿大学 2014年 第3問
$a,\ b$を正の定数とし,関数
\[ f(x)=\frac{1}{e^{\frac{x-a}{b}}+2} \quad (x>0) \]
を考える.

(1)$x>a$のとき,$\displaystyle \lim_{b \to +0}f(x)=[ア]$であり,$x<a$のとき,$\displaystyle \lim_{b \to +0}f(x)=\frac{[イ]}{[ウ]}$である.
(2)曲線$y=f(x)$の点$(a,\ f(a))$における接線の方程式は,$\displaystyle y=\frac{[エオ]}{[カ]b}x+\frac{a+[キ]b}{[ク]b}$である.
(3)$\displaystyle b=\frac{1}{3}$とする.$t=e^{3(x-a)}$とおくと,$\displaystyle \frac{dx}{dt}=\frac{1}{[ケ]t}$であり,正の定数$c$に対して,
\[ \int_a^{a+c}f(x) \, dx=\frac{1}{[コ]} \log \left( \frac{[サ]e^{3c}}{e^{3c}+[シ]} \right) \]
となる.また,正の定数$p,\ q$が,$\displaystyle \int_{a-q}^{a+p} f(x) \, dx=\frac{4}{3}p$を満たすとき,
\[ q=\frac{1}{[ス]} \log \left( \frac{e^{[セ]p}+[ソ]e^{[タ]p}-1}{[チ]} \right) \]
となる.
産業医科大学 私立 産業医科大学 2014年 第1問
空欄にあてはまる適切な数,式,記号などを記入しなさい.

(1)実数$x$の関数$f(x)=|\sin 2x+2 \sin x+2 \cos x|$の最大値は$[ア]$である.
(2)行列$A=\left( \begin{array}{cc}
\cos \theta & -2 \sin \theta \\
\displaystyle\frac{1}{2} \sin \theta & \cos \theta
\end{array} \right)$が$0<\theta<\pi$の範囲で$A^5=A^2$を満たすとき,実数$\theta$の値は$[イ]$である.
(3)定積分$\displaystyle \int_0^{-1} \frac{x^2-1}{x^2+1} \, dx$の値は$[ウ]$である.
(4)$n$をある自然数とする.実数$x$に対して,方程式$7 \sin^{8n} x+x=0$の解の個数は$[エ]$である.
(5)$\displaystyle 0<a<\frac{1}{4}$とする.座標平面において,方程式$\displaystyle -4ax+\sqrt{(x+a)^2+y^2}=\frac{1}{4}$で表される曲線が囲む図形の面積は$[オ]$である.
(6)$x+y+z+w=20$を満たす正の整数$x,\ y,\ z,\ w$の組は全部で$[カ]$個である.
(7)$7$つの実数$\displaystyle \frac{1}{2}$,$\sqrt{\pi}$,$\sqrt{3}$,$\displaystyle \frac{\pi^2}{8}$,$\displaystyle \sin \frac{\pi}{8}$,$\displaystyle \cos \frac{\pi}{8}$,$\displaystyle \tan \frac{\pi}{8}$を小さい方から順に並べたものを$A<B<C<D<E<F<G$とする.このとき実数$A^2$の値は$[キ]$であり,$E^2-F^2+G^2$の値は$[ク]$である.
京都薬科大学 私立 京都薬科大学 2014年 第1問
次の$[ ]$にあてはまる数または式を記入せよ.

(1)$a$を実数の定数として,放物線$y=2x^2-(a+3)x+a+1$のグラフの頂点は$([ア],\ [イ])$で,この点は$a$の値にかかわらず,放物線$y=[ウ]x^2+[エ]x-[オ]$上にある.
(2)平面上の直線$y=2x+1$と点$(0,\ 1)$において${45}^\circ$の角度で交わる直線は$2$つあり,これらの直線の方程式は,$[カ]$と$[キ]$である.
(3)$5$つの数$\sqrt[3]{4}$,$1$,$16^{\frac{1}{5}}$,$\log_43$,$\log_32$を小さいほうから順に並べると
\[ [ク]<[ケ]<[コ]<[サ]<[シ] \]
となる.
(4)方程式$7x+19y=2014$を満たす自然数の組$(x,\ y)$は$[ス]$個ある.
近畿大学 私立 近畿大学 2014年 第1問
次の問いに答えよ.

(1)$\displaystyle \sin \theta \cos \theta=\frac{1}{8}$とする.ただし$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{4}$とする.

(i) $\displaystyle \sin \theta+\cos \theta=\frac{\sqrt{[ア]}}{[イ]}$,$\displaystyle \sin \theta-\cos \theta=-\frac{\sqrt{[ウ]}}{[エ]}$である.
(ii) $\displaystyle \cos 2\theta=\frac{\sqrt{[オカ]}}{[キ]}$,$\tan \theta=[ク]-\sqrt{[ケコ]}$である.

(2)$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$,$\mathrm{E}$の$5$チームがあり,それぞれのチームは他のチームと$1$回ずつ試合をする.$2$つのチームが対戦するときの勝敗の確率は$\displaystyle \frac{1}{2}$とし,引き分けはないものとする.

(i) 試合は全部で$[サシ]$試合行われる.
(ii) $4$敗のチームが現れる確率は$\displaystyle \frac{[ス]}{[セソ]}$である.
(iii) $3$勝$1$敗のチームがちょうど$3$チーム現れる確率は$\displaystyle \frac{[タ]}{[チツテ]}$である.
近畿大学 私立 近畿大学 2014年 第3問
一般項が
\[ a_n=\frac{1}{\sqrt{13}} \left\{ \left( \frac{1+\sqrt{13}}{2} \right)^n-\left( \frac{1-\sqrt{13}}{2} \right)^n \right\} \]
で与えられた数列$\{a_n\}$を考える.

(1)この数列の初項$a_1$の値は$[ア]$,第$2$項$a_2$の値は$[イ]$である.
(2)この数列は,漸化式$a_{n+2}=a_{n+1}+[ウ]a_n (n=1,\ 2,\ 3,\ \cdots)$を満たす.
(3)この数列の第$7$項$a_7$の値は$[エオ]$である.
(4)この数列の初項から第$n$項までの和を$S_n$で表す.このとき
\[ a_{n+2}=[カ]+[キ]S_n \quad (n=1,\ 2,\ 3,\ \cdots) \]
が成り立つ.
(5)この数列には,$1$桁の素数$[ク]$の倍数は現れない.
(6)$(4)$で与えられた$S_n$が$10000$以上となるような最小の$n$の値は$[ケコ]$である.
スポンサーリンク

「空欄補充」とは・・・

 まだこのタグの説明は執筆されていません。