タグ「空欄補充」の検索結果

55ページ目:全1740問中541問~550問を表示)
旭川大学 私立 旭川大学 2015年 第1問
次の各設問に答えなさい.

(1)$\displaystyle \frac{1}{1-a}+\frac{1}{1+a}+\frac{2}{1+a^2}+\frac{4}{1+a^4}+\frac{8}{1+a^8}$を計算しなさい.

(2)$\displaystyle \frac{1}{\sqrt{5}-2}$の整数部分を$a$,小数部分を$b$とするとき,$a$と$b$の値を求めよ.

(3)$k$を正の定数とし,$2$つの放物線$y=-x^2+4x-2k$,$y=x^2+2kx+3k$をそれぞれ$C_1$,$C_2$とする.以下の問いに答えなさい.

(i) $C_1$の頂点の$y$座標が$1$であるとき,$k$の値を求めよ.
(ii) $C_2$が$x$軸と接するとき,$k$の値を求めよ.

(4)$\mathrm{AB}=5$,$\mathrm{AC}=4$,$\angle \mathrm{BAC}={60}^\circ$である$\triangle \mathrm{ABC}$がある.$\angle \mathrm{BAC}$の二等分線と辺$\mathrm{BC}$の交点を$\mathrm{D}$とするとき,$\mathrm{AD}$の長さを求めよ.
(5)男子$4$人,女子$3$人が一列に並ぶとき,女子$3$人が続く並び方は,$[ア]$通りであり,両端に男子が並ぶのは$[イ]$通りである.
広島経済大学 私立 広島経済大学 2015年 第4問
$\mathrm{AB}=2 \sqrt{3}$,$\angle \mathrm{B}={60}^\circ$,$\angle \mathrm{C}={45}^\circ$の三角形$\mathrm{ABC}$について次の各問の空欄に当てはまる最も適切な数値を記入せよ.

(1)$\mathrm{AC}=[$28$] \sqrt{[$29$]}$,$\mathrm{BC}=\sqrt{[$30$]}+[$31$]$である.

(2)$\displaystyle \cos \angle \mathrm{BAC}=\frac{\sqrt{[$32$]}-\sqrt{[$33$]}}{[$34$]}$である.

(3)辺$\mathrm{AC}$上に$\mathrm{BA}=\mathrm{BD}$を満たす$\mathrm{A}$と異なる点$\mathrm{D}$を定め,更に辺$\mathrm{BC}$上に$\angle \mathrm{BED}={90}^\circ$を満たす点$\mathrm{E}$を定めると,$\mathrm{AD}=[$35$] \sqrt{[$36$]}-\sqrt{[$37$]}$,$\mathrm{BE}=[$38$]$である.
広島経済大学 私立 広島経済大学 2015年 第5問
次の各問の空欄に当てはまる最も適切な数値を記入せよ.

(1)$n$を自然数とする.$\sqrt{504n}$は$n=[$39$]$のとき最小の自然数$[$40$]$になる.
(2)和が$80$,最大公約数が$16$である$2$つの自然数の差は$[$41$]$または$[$42$]$である.但し$[$41$]<[$42$]$とする.
(3)$9$で割ると$2$余り$8$で割ると$3$余る自然数$n$のうち,$10 \leqq n \leqq 100$を満たす$n$は$[$43$]$と$[$44$]$である.但し$[$43$]<[$44$]$とする.
(4)$112,\ 211,\ 409$のいずれを割っても余りが$13$となる自然数のうち,最大の自然数は$[$45$]$であり,最小の自然数は$[$46$]$である.
西南学院大学 私立 西南学院大学 2015年 第1問
$2$個のサイコロを同時に投げる試行を行う.$2$個のサイコロのうち少なくとも$1$個は$1$の目が出る事象を$A$,$2$個とも同じ目が出る事象を$B$とする.このとき以下の確率を求めよ.ただし,$P(X)$は,事象$X$の起こる確率を表す.

(1)$\displaystyle P(\overline{A} \cup B)=\frac{[アイ]}{[ウエ]}$
(2)この試行を$2$回行うとき,少なくとも$1$回は事象$A$が起こる確率は,$\displaystyle \frac{[オカキ]}{\ \fboxsep=0pt\fbox{\rule[-0.25em]{0pt}{1.1em}\makebox[14mm][c]{\small{クケコサ}}}\ }$である.

(3)この試行を$2$回行うとき,少なくとも$1$回は事象$B$が起こる確率は,$\displaystyle \frac{[シス]}{[セソ]}$である.
西南学院大学 私立 西南学院大学 2015年 第3問
放物線$C:y=x^2-x$上の点$\mathrm{P}(2,\ 2)$における$C$の接線を$\ell_1$とし,$C$の接線のうち$\ell_1$と直交する直線を$\ell_2$とする.このとき,以下の問に答えよ.

(1)$\ell_1$の方程式は,$y=[ナ]x-[ニ]$である.

(2)$\ell_2$の方程式は,$\displaystyle y=-\frac{[ヌ]}{[ネ]}x-\frac{[ノ]}{[ハ]}$である.

(3)$\ell_1,\ \ell_2,\ C$で囲まれる部分の面積は,
\[ \int_a^2 \left\{ (x^2-x)-\left( \mkakko{ナ}x-\mkakko{ニ} \right) \right\} \, dx+\int_b^a \left\{ (x^2-x)-\left( -\frac{\mkakko{ヌ}}{\mkakko{ネ}}x-\frac{\mkakko{ノ}}{\mkakko{ハ}} \right) \right\} \, dx \]
によって求められる.ただし,$\displaystyle a=\frac{[ヒ]}{[フ]}$,$\displaystyle b=\frac{[ヘ]}{[ホ]}$である.
西南学院大学 私立 西南学院大学 2015年 第1問
男子$4$人,女子$4$人の合計$8$人のメンバーがいる.以下の問に答えよ.

(1)$8$人を同性$2$人から成る$4$つのグループに分け,さらにこのグループを,先頭から男子グループ,女子グループ,男子グループ,女子グループの順に並べる方法は全部で$[アイ]$通りある.
(2)くじ引きで,男女ペアから成る$4$つのグループを作る.このときメンバーの$1$人である自分が,ある特定の異性と同じグループになる確率は$\displaystyle \frac{[ウ]}{[エ]}$である.
(3)くじ引きで,$2$人ずつ$4$つのグループを作る.このとき同性同士のグループが少なくとも$1$つできる確率は$\displaystyle \frac{[オカ]}{[キク]}$である.
西南学院大学 私立 西南学院大学 2015年 第3問
以下の問に答えよ.

(1)$\sqrt{2},\ \sqrt[3]{3},\ \sqrt[6]{6}$の大小関係について,以下の$1$~$6$の選択肢のうち,$[ツ]$が成立する.

\mon[$1$ \quad] $\sqrt{2}<\sqrt[3]{3}<\sqrt[6]{6}$
\mon[$2$ \quad] $\sqrt{2}<\sqrt[6]{6}<\sqrt[3]{3}$
\mon[$3$ \quad] $\sqrt[3]{3}<\sqrt{2}<\sqrt[6]{6}$
\mon[$4$ \quad] $\sqrt[3]{3}<\sqrt[6]{6}<\sqrt{2}$
\mon[$5$ \quad] $\sqrt[6]{6}<\sqrt{2}<\sqrt[3]{3}$
\mon[$6$ \quad] $\sqrt[6]{6}<\sqrt[3]{3}<\sqrt{2}$

(2)$a>b>1$のとき,$\displaystyle \log_a b-\log_b a=-\frac{2 \sqrt{7}}{3}$ならば,$\displaystyle \log_a b+\log_b a=\frac{[テ]}{[ト]}$である.
(3)$\displaystyle y=\log_8 (1+x^2)-\frac{1}{3} \log_2 x$は$x=[ナ]$のとき最小値$\displaystyle \frac{[ニ]}{[ヌ]}$をとる.
広島文化学園大学 私立 広島文化学園大学 2015年 第1問
次の問いに答えよ.

(1)$(x^2+2x+3)(x^2-2x+3)$を展開せよ.
(2)$x^2-4ax-5a^2$を因数分解せよ.
(3)$\displaystyle x=\frac{1}{\sqrt{3}+2},\ y=\frac{1}{\sqrt{3}-2}$のとき,式$x^2+y^2$の値を求めよ.
(4)$|3x+1| \geqq 2$を解け.
(5)集合$A$を$1$から$12$までの自然数の集合,集合$B$を素数全体の集合とするとき,$A \cap B$の要素を書き並べて表せ.
(6)次の$[ ]$にあてはまるものとして,「必要条件である」,「十分条件である」,「必要十分条件である」,「必要条件でも十分条件でもない」のうち,最も適切なものを選べ.
$x^2=16$は$x=4$であるための$[ ]$.
(7)$\displaystyle \sin \theta=\frac{3}{\sqrt{13}}$であるとき,$\cos^2 \theta-\sin^2 \theta$の値を求めよ.
(8)$\triangle \mathrm{ABC}$において,$\angle \mathrm{A}={135}^\circ$,$\mathrm{AB}=2$,$\mathrm{AC}=\sqrt{2}$のとき,$\mathrm{BC}$を求めよ.
大阪工業大学 私立 大阪工業大学 2015年 第1問
次の空所を埋めよ.

(1)$2$次方程式$x^2-x+k=0$が異なる$2$つの正の実数$m$と$m^2$を解にもつとき,実数$m,\ k$の値は,$m=[ア]$,$k=[イ]$である.
(2)$f(x)=2 \sin x \cos x+\sqrt{3} \cos 2x$とする.このとき,$\displaystyle f(x)=2 \sin \left( 2x+[ウ] \right)$である.ただし,$0 \leqq [ウ]<2\pi$とする.また,$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$のとき,$f(x)$の最小値$m$は,$m=[エ]$である.
(3)$3^a=2,\ 8^b=9$のとき,$a=[オ]$であり,積$ab$の値を対数を用いずに表すと,$ab=[カ]$である.
(4)$\fbox{$1$}$,$\fbox{$1$}$,$\fbox{$2$}$,$\fbox{$3$}$の$4$枚のカードのうち,$3$枚を並べて$3$桁の整数をつくるとき,つくられる整数は全部で$[キ]$個ある.また,$\fbox{$0$}$,$\fbox{$1$}$,$\fbox{$1$}$,$\fbox{$2$}$,$\fbox{$3$}$の$5$枚のカードのうち,$4$枚を並べて$4$桁の整数をつくるとき,つくられる整数は全部で$[ク]$個ある.
大阪工業大学 私立 大阪工業大学 2015年 第2問
$\triangle \mathrm{OAB}$において,辺$\mathrm{AB}$の中点を$\mathrm{C}$,辺$\mathrm{AB}$を$1:3$に内分する点を$\mathrm{D}$とする.$|\overrightarrow{\mathrm{OC}}|=2$,$|\overrightarrow{\mathrm{OD}}|=2$,$\angle \mathrm{COD}={60}^\circ$とするとき,次の空所を埋めよ.

(1)$\overrightarrow{\mathrm{OC}},\ \overrightarrow{\mathrm{OD}}$を,$\overrightarrow{\mathrm{OA}},\ \overrightarrow{\mathrm{OB}}$を用いて表すと,$\overrightarrow{\mathrm{OC}}=[ア] \overrightarrow{\mathrm{OA}}+[イ] \overrightarrow{\mathrm{OB}}$,$\overrightarrow{\mathrm{OD}}=[ウ] \overrightarrow{\mathrm{OA}}+[エ] \overrightarrow{\mathrm{OB}}$である.
(2)$\overrightarrow{\mathrm{OA}},\ \overrightarrow{\mathrm{OB}}$を,$\overrightarrow{\mathrm{OC}},\ \overrightarrow{\mathrm{OD}}$を用いて表すと,$\overrightarrow{\mathrm{OA}}=[オ] \overrightarrow{\mathrm{OC}}+[カ] \overrightarrow{\mathrm{OD}}$,$\overrightarrow{\mathrm{OB}}=[キ] \overrightarrow{\mathrm{OC}}+[ク] \overrightarrow{\mathrm{OD}}$である.
(3)$|\overrightarrow{\mathrm{OA}}|=[ケ]$であり,$|\overrightarrow{\mathrm{OB}}|=[コ]$である.
(4)$\triangle \mathrm{OAB}$の面積は$[サ]$である.
スポンサーリンク

「空欄補充」とは・・・

 まだこのタグの説明は執筆されていません。