タグ「空欄補充」の検索結果

33ページ目:全1740問中321問~330問を表示)
慶應義塾大学 私立 慶應義塾大学 2015年 第1問
次の問いに答えよ.

(1)次の問いに答えよ.

(i) $f(x,\ y)=2x^2+11xy+12y^2-5y-2$を因数分解すると,
\[ \left(x+[$1$]y+[$2$] \right) \left([$3$]x+[$4$]y-[$5$] \right) \]
である.
(ii) $f(x,\ y)=56$を満たす自然数$x,\ y$の値は,$x=[$6$]$,$y=[$7$]$である.

(2)$xy$平面上の$2$直線$y=x+4 \sin \theta+1$,$y=-x+4 \cos \theta-3$の交点を$\mathrm{P}$とおく.ただし,$\theta$は実数とする.

(i) $\displaystyle \theta=\frac{\pi}{12}$のとき,点$\mathrm{P}$の座標は$\displaystyle \left( \sqrt{[$8$]}-[$9$],\ \sqrt{[$10$]}-[$11$] \right)$である.
(ii) $\theta$が実数全体を動くとき,点$\mathrm{P}$の軌跡は
\[ x^2+y^2+[$12$]x+[$13$]y-[$14$]=0 \]
である.

(3)$2$次関数$f(x)$は,すべての実数$x$について
\[ \int_0^x f(t) \, dt=xf(x)-\frac{4}{3}x^3+ax^2 \]
を満たす.ただし,$a$は実数である.また,$f(0)=a^2-a-6$である.このとき,

(i) $f(x)=[$15$]x^2-[$16$]ax+\left( a+[$17$] \right) \left( a-[$18$] \right)$である.
(ii) 方程式$f(x)=0$が少なくとも$1$つの正の実数解をもつような$a$の値の範囲は
\[ [$19$][$20$]<a \leqq [$21$]+\sqrt{[$22$][$23$]} \]
である.

(4)$\{a_n\}$は,数字の$1$と$2$だけで作ることのできる自然数を小さい順に並べた数列である.
\[ \{a_n\} : \ 1,\ 2,\ 11,\ 12,\ 21,\ 22,\ 111,\ \cdots \]
このとき,

(i) $a_{10}=[$24$][$25$][$26$]$,$a_{15}=\kakkofour{$27$}{$28$}{$29$}{$30$}$である.
(ii) $\displaystyle \sum_{k=7}^{14} a_k=\kakkofour{$31$}{$32$}{$33$}{$34$}$である.
(iii) $\{a_n\}$のうち,$m$桁である項の総和は$\displaystyle \frac{{[$35$]}^{m-1} \left\{ \left([$36$][$37$] \right)^m-[$38$] \right\}}{[$39$]}$である.
慶應義塾大学 私立 慶應義塾大学 2015年 第2問
$xy$平面上に放物線$\displaystyle P:y=\frac{1}{4}x^2$と直線$\displaystyle \ell:y=\frac{1}{2}x+\frac{1}{4}(a^2-1)$がある.ただし,$a$は$0<a<\sqrt{33}$を満たす実数である.$P$と$\ell$は異なる$2$点$\mathrm{A}$,$\mathrm{B}$で交わり,$\mathrm{A}$,$\mathrm{B}$の$x$座標をそれぞれ$x_A$,$x_B$とおくと,$x_A<x_B$である.

次に,線分$\mathrm{AB}$を$1$辺とし,線分$\mathrm{CD}$が$(0,\ 8)$を通る長方形$\mathrm{ABDC}$をおく.長方形$\mathrm{ABDC}$の面積を$S(a)$とする.このとき,

(1)$2$点$\mathrm{C}$,$\mathrm{D}$を結ぶ直線の傾きは$\displaystyle \frac{[$40$]}{[$41$]}$であり,線分$\mathrm{AB}$の長さを$a$を用いて表すと$\sqrt{[$42$]}a$である.
(2)$S(a)$を$a$の式で表すと
\[ S(a)=\frac{[$43$][$44$]}{[$45$]}a^3+\frac{[$46$][$47$]}{[$48$]}a \]
である.
また,$S(a)$が最大値をとるとき,$a$の値は$\sqrt{[$49$][$50$]}$である.
(3)放物線$P$と直線$\ell$で囲まれた部分の面積が,$S(a)$の$3$倍であるとき,$a$の値は$[$51$] \sqrt{[$52$]}$である.
慶應義塾大学 私立 慶應義塾大学 2015年 第4問
ボタンを$1$回押すたびに$1,\ 2,\ 3,\ 4,\ 5,\ 6$のいずれかの数字が$1$つ画面に表示される機械がある.このうちの$1$つの数字$Q$が表示される確率は$\displaystyle \frac{1}{k}$であり,$Q$以外の数字が表示される確率はいずれも等しいとする.ただし,$k$は$k>6$を満たす自然数とする.

ボタンを$1$回押して表示された数字を確認する試行を繰り返すとき,$1$回目に$4$の数字,$2$回目に$5$の数字が表示される確率は,$1$回目に$5$の数字,$2$回目に$6$の数字が表示される確率の$\displaystyle \frac{8}{5}$倍である.このとき,

(1)$Q$は$[$59$]$であり,$k$は$[$60$]$である.
(2)この試行を$3$回繰り返すとき,表示された$3$つの数字の和が$16$となる確率は
\[ \frac{[$61$][$62$][$63$]}{\kakkofour{$64$}{$65$}{$66$}{$67$}} \]
である.
(3)この試行を$500$回繰り返すとき,そのうち$Q$の数字が$n$回表示される確率を$P_n$とおくと,$P_n$の値が最も大きくなる$n$の値は$[$68$][$69$]$である.
慶應義塾大学 私立 慶應義塾大学 2015年 第1問
次の問いに答えよ.

(1)$\mathrm{AB}=3$,$\mathrm{BC}=4$,$\mathrm{CD}=5$,$\mathrm{DA}=6$をみたす四角形$\mathrm{ABCD}$を考える.この四角形の面積を$F$とすると
\[ F=[$1$][$2$] \sin B+[$3$][$4$] \sin D \]
が成り立つ.余弦定理を用いれば
\[ F^2=[$5$][$6$][$7$]-[$8$][$9$][$10$] \cos (B+D) \]
を得る.$B+D=\pi$のとき,$F$は最大値
\[ 6 \sqrt{[$11$][$12$]} \]
をとる.
(2)辺の長さが$2 \sqrt{3}$の正四面体$F$がある.$F$の内部に中心をもち,$F$のどの辺とも高々$1$点を共有する球を考える.これらの球の中で最大のものを$B$とすれば,$B$の体積は$[$13$] \sqrt{[$14$]}\pi$である.
福岡大学 私立 福岡大学 2015年 第6問
公比が正の等比数列がある.初項と第$2$項の和が$\displaystyle \frac{16}{7}$であり,初項から第$6$項までの和が$19$であるとき,この等比数列の初項は$[ ]$であり,公比は$[ ]$である.
福岡大学 私立 福岡大学 2015年 第7問
$a=\log_2 3$,$b=\log_2 5$とする.このとき$2^{-2a+b+1}$と$2^{2a-3}$の値を求めると
\[ (2^{-2a+b+1},\ 2^{2a-3})=[ ] \]
である.さらに,$a=\log_2 3>1.584$,$b=\log_2 5<2.322$であることを用いて,$2^{0.16}$の値を小数第$1$位まで求めると$2^{0.16}=[ ]$である.
福岡大学 私立 福岡大学 2015年 第8問
単位円周上の$2n$個の点$\displaystyle \mathrm{P}_k \left( \cos \frac{k}{n}\pi,\ \sin \frac{k}{n}\pi \right) (k=0,\ 1,\ 2,\ \cdots,\ 2n-1)$を頂点とする正$2n$角形がある.この$2n$個の点$\mathrm{P}_0,\ \mathrm{P}_1,\ \cdots,\ \mathrm{P}_{2n-1}$から$4$点を選び,順に結んで$4$角形を作るとき,$4$つの角がすべて直角である$4$角形は$[ ]$通りある.また,$4$つの角がどれも直角ではない$4$角形は$[ ]$通りある.ただし,$n \geqq 3$である.
福岡大学 私立 福岡大学 2015年 第2問
次の$[ ]$をうめよ.

(1)$t=\sin x$とおくとき,$\displaystyle y=\sin x \cos \left( \frac{\pi}{6}-x \right) \cos \left( \frac{\pi}{6}+x \right)$を$t$の式で表すと$y=[ ]$であり,$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$における$y$の最小値は$[ ]$である.
(2)一般項$a_n=2nr^{n-1} (n=1,\ 2,\ \cdots)$で表される数列$\{a_n\}$の初項から第$n$項までの和$S_n$を求めると,$r=1$のとき$[ ]$であり,$r=2$のとき$[ ]$である.
慶應義塾大学 私立 慶應義塾大学 2015年 第1問
$\mathrm{O}$を原点とする座標空間に,$2$点$\mathrm{A}(0,\ 1,\ 2)$,$\mathrm{B}(1,\ 2,\ 0)$がある.

(1)$\triangle \mathrm{OAB}$の面積は$\displaystyle \frac{\sqrt{[$1$][$2$]}}{[$3$]}$である.
(2)点$\mathrm{C}$の位置を,位置ベクトル
\[ \overrightarrow{\mathrm{OC}}=\frac{2}{3} \overrightarrow{\mathrm{OA}}+\frac{2}{3} \overrightarrow{\mathrm{OB}} \]
によって定める.このとき,$\triangle \mathrm{ABC}$と$\triangle \mathrm{OAB}$の面積の比は
\[ \frac{\triangle \mathrm{ABC}}{\triangle \mathrm{OAB}}=\frac{[$4$]}{[$5$]} \]
である.
(3)$2$つのベクトル$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$の両方に垂直な単位ベクトルのうちの$1$つは,
\[ \frac{\sqrt{[$6$][$7$]}}{21} \left( [$8$],\ -[$9$],\ 1 \right) \]
である.
(4)$t$を実数として,点$\displaystyle \mathrm{D} \left( \frac{t^2}{4},\ 4t,\ 19 \right)$を定める.このとき,四面体$\mathrm{ABCD}$の体積$V(t)$は
\[ V(t)=\frac{[$10$]}{[$11$][$12$]} \left( t^2-[$13$]t+[$14$][$15$] \right) \]
である.
(5)数列$\{a_n\}$を次のように定める.
\[ a_1=1,\quad a_{n+1}=a_n+\frac{n+1}{10} \quad (n=1,\ 2,\ 3,\ \cdots) \]
このとき,$V(a_n)$は,$n=[$16$]$で最小となる.
慶應義塾大学 私立 慶應義塾大学 2015年 第2問
半径$1$の円周上に$8$個の点があり,それぞれの点は隣り合う点とすべて等間隔に配置されている.それらの点には,反時計回りに$1$から$8$までの番号が順番についている.また,中の見えない袋の中に,$8$個の球が入っていて,それらの球には,$1$から$8$の番号が$1$つずつ書かれている.

(1)袋から同時に$3$つの球を取り出すとき,取り出した球と同じ番号のついた円周上の$3$点を頂点とする三角形の作り方は,全部で$[$17$][$18$]$通りある.このとき,作られた三角形の面積と,その面積が得られる確率の一覧表を作ることができる.以下の表を,上から下に面積の小さい順に並べて完成させなさい.

\begin{tabular}{cl}
\hline
面積 & 確率 \\ \hline
\phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{2}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} $\displaystyle\frac{\sqrt{[$19$]}-[$20$]}{[$21$]}$ & $\displaystyle\frac{[$22$]}{[$23$]}$ \phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{\displaystyle\frac{2}{2}}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} \\ \hline
\phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{2}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} $\displaystyle\frac{[$24$]}{[$25$]}$ & $\displaystyle\frac{[$26$]}{[$27$]}$ \phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{\displaystyle\frac{2}{2}}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} \\ \hline
\phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{2}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} $\displaystyle\frac{\sqrt{[$28$]}}{[$29$]}$ & $\displaystyle\frac{[$30$]}{[$31$]}$ \phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{\displaystyle\frac{2}{2}}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} \\ \hline
\phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{2}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} $[$32$]$ & $\displaystyle\frac{[$33$]}{[$34$]}$ \phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{\displaystyle\frac{2}{2}}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} \\ \hline
\phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{2}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} $\displaystyle\frac{\sqrt{[$35$]}+[$36$]}{[$37$]}$ & $\displaystyle\frac{[$38$]}{[$39$]}$ \phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{\displaystyle\frac{2}{2}}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} \\ \hline
\end{tabular}


(2)袋から同時に$4$つの球を取り出すとき,取り出した球と同じ番号のついた円周上の$4$点を頂点とする四角形の作り方は,全部で$[$40$][$41$]$通りある.このとき,作られた四角形の面積と,その面積が得られる確率の一覧表を作ることができる.以下の表を,上から下に面積の小さい順に並べて完成させなさい.

\begin{tabular}{cl}
\hline
面積 & 確率 \\ \hline
\phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{2}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} $\displaystyle\frac{\sqrt{[$42$]}}{[$43$]}$ & $\displaystyle\frac{[$44$]}{[$45$][$46$]}$ \phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{\displaystyle\frac{2}{2}}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} \\ \hline
\phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{2}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} $\displaystyle\frac{\sqrt{[$47$]}+[$48$]}{[$49$]}$ & $\displaystyle\frac{[$50$][$51$]}{[$52$][$53$]}$ \phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{\displaystyle\frac{2}{2}}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} \\ \hline
\phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{2}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} $\displaystyle\sqrt{[$54$]}$ & $\displaystyle\frac{[$55$]}{[$56$][$57$]}$ \phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{\displaystyle\frac{2}{2}}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} \\ \hline
\phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{2}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} $\displaystyle\frac{\sqrt{[$58$]}+[$59$]}{[$60$]}$ & $\displaystyle\frac{[$61$][$62$]}{[$63$][$64$]}$ \phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{\displaystyle\frac{2}{2}}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} \\ \hline
\phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{2}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} $[$65$]$ & $\displaystyle\frac{[$66$]}{[$67$][$68$]}$ \phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{\displaystyle\frac{2}{2}}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} \\ \hline
\end{tabular}
スポンサーリンク

「空欄補充」とは・・・

 まだこのタグの説明は執筆されていません。