タグ「空欄補充」の検索結果

23ページ目:全1740問中221問~230問を表示)
聖マリアンナ医科大学 私立 聖マリアンナ医科大学 2016年 第3問
$a$を正の定数,$e$を自然対数の底として,$\displaystyle f(x)=\int_0^a |xe^x-te^t| \, dt (0 \leqq x \leqq a)$とする.以下の$[ ]$にあてはまる適切な数,または式を記入しなさい.また,$(2)$に答えなさい.

(1)$f(0)=[ ]$であり,$f(a)=[ ]$である.
(2)$f(x)$を$a$と$x$を用いた式で表せ(途中の計算式も合わせて記載せよ).
(3)$f^\prime(x)=0$のとき,$x=[ ]$である.
(4)$f(x)$の最小値は$[ ]$,最大値は$[ ]$である.
東洋大学 私立 東洋大学 2016年 第2問
厚さ$1 \, \mathrm{cm}$のアクリル板で半球形の容器を作るとき,アクリル板の強度を考慮すると,最大で$50 \, l$の容積をもつ容器を作ることができるものとする.このアクリル板の厚さを$1 \, \mathrm{cm}$増やすごとに,作れる容器の最大の容積は$1.3$倍になる.一方,このアクリル板は,厚さ$1 \, \mathrm{cm}$のときに光の透過率が$90 \, \%$で,厚さを$1 \, \mathrm{cm}$増やすごとに透過率は$0.9$倍になる.次の各問に答えよ.ただし,アクリル板は$1 \, \mathrm{cm}$単位の加工しかできないこととし,必要ならば$\log_{10}2=0.3010$,$\log_{10}3=0.4771$を用いてもよい.

(1)アクリル板の厚さを$2 \, \mathrm{cm}$としたとき,その透過率は$[アイ] \, \%$になる.
(2)アクリル板の厚さを$2 \, \mathrm{cm}$としたとき,容器の容積は最大で$[ウエ] \, l$になる.
(3)アクリル板の透過率を$50 \, \%$以上としながら,容積の最も大きな容器を作りたい.このとき,アクリル板の厚さを$[オ] \, \mathrm{cm}$とすればよく,その容器の容積は,小数第$1$位を切り捨てて$[カキク] \, l$である.
東洋大学 私立 東洋大学 2016年 第4問
$xy$平面において,点$\mathrm{P}$が単位円周上の$y \geqq 0$の部分を動くとき,点$\mathrm{P}$から単位円周上の$3$点$\mathrm{A}(1,\ 0)$,$\mathrm{B}(-1,\ 0)$,$\displaystyle \mathrm{C} \left( \frac{1}{2},\ \frac{\sqrt{3}}{2} \right)$までの距離の和$\mathrm{PA}+\mathrm{PB}+\mathrm{PC}$を$L$とする.以下,$L$の最大値を求める.点$\mathrm{P}$の座標を$(\cos \theta,\ \sin \theta)$とおき,$L$を$\theta$の式で表すと,


$\displaystyle L=\sqrt{(\cos \theta-[ア])^2+\sin^2 \theta}+\sqrt{(\cos \theta+[イ])^2+\sin^2 \theta}$

$\displaystyle +\sqrt{\left( \cos \theta-\frac{1}{[ウ]} \right)^2+\left( \sin \theta-\frac{\sqrt{[エ]}}{[オ]} \right)^2}$


と表される.整理すると,たとえば,点$\mathrm{P}$が第$2$象限にあるとき,
\[ L=\left( [カ]+\sqrt{[キ]} \right) \sin \frac{\theta}{[ク]}+\cos \frac{\theta}{[ケ]} \]
となり,適当な実数$\alpha$を用いて
\[ L=\sqrt{[コ]+[サ] \sqrt{[シ]}} \sin \left( \frac{\theta}{[ス]}+\alpha \right) \]
と表すことができる.よって,$L$の最大値は,$\sqrt{[セ]}+\sqrt{[ソ]}$である.ただし,$[セ]>[ソ]$とする.
大阪工業大学 私立 大阪工業大学 2016年 第1問
次の空所を埋めよ.

(1)$2$次方程式$2x^2-5x+1=0$の$2$つの解を$\alpha,\ \beta$とするとき,$\alpha+\beta=[ア]$であり,$2(\alpha-2)(\beta-2)=[イ]$である.
(2)$2^6=13 \times [ウ]-1$であり,$2^{100}$を$13$で割ると$[エ]$余る.ただし,$0 \leqq [エ]<13$とする.
(3)$1$辺の長さが$2$の正三角形$\mathrm{OAB}$がある.このとき,$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}=[オ]$である.また,辺$\mathrm{AB}$上の点$\mathrm{P}$が$\displaystyle \overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OP}}=\frac{5}{2}$を満たすとき,点$\mathrm{P}$は辺$\mathrm{AB}$を$[カ]:1$に内分する.
(4)大小$2$つのさいころを同時に投げ,出た目の数をそれぞれ$a,\ b$とする.このとき,積$ab$が偶数になる目の出方は$[キ]$通りあり,$a+3b$が$5$の倍数になる目の出方は$[ク]$通りある.
大阪工業大学 私立 大阪工業大学 2016年 第2問
次の空所を埋めよ.

(1)数列$\{a_n\}$が$a_1=2$,$a_{n+1}=3a_n+2^n (n=1,\ 2,\ 3,\ \cdots)$を満たすとき,$a_2=[ア]$,$a_3=[イ]$である.また,漸化式を変形すると,$a_{n+1}+2^{n+1}=3(a_n+[ウ])$となることから,数列$\{a_n\}$の一般項は,$a_n=[エ]$である.
(2)$t>0$とし,$k$を実数とする.原点を$\mathrm{O}$とする座標平面上の$2$点$\displaystyle \mathrm{A} \left( \frac{\sqrt{2}}{2},\ \frac{\sqrt{2}}{2} \right)$,$\mathrm{B}(t,\ -t)$について,$\mathrm{AB}=2 \sqrt{2}$であるとする.このとき,$t=[オ]$である.さらに,直線$\mathrm{OA}$上の点$\mathrm{P}(k,\ k)$を中心とする円$C$が$2$点$\mathrm{A}$,$\mathrm{B}$を通るとき,$k=[カ]$であり,円$C$の半径$r$は,$r=[キ]$である.
大阪工業大学 私立 大阪工業大学 2016年 第3問
次の空所を埋めよ.

(1)$\log_{10}2=A$,$\log_{10}3=B$とするとき,$\log_{10}6$,$\log_{10}5$の値をそれぞれ$A,\ B$を用いて表すと,$\log_{10}6=[ア]$,$\log_{10}5=[イ]$である.
また,$\log_{10}{(0.6)}^{50}=50(\log_{10}6-[ウ])$であるから,${0.6}^{50}$は小数第$[エ]$位にはじめて$0$でない数字が現れる.ただし,$\log_{10}6=0.7782$を用いてもよい.
(2)$m,\ n$を正の整数として,分数$\displaystyle \frac{n}{m}$がこれ以上約分できないとき,すなわち,$m,\ n$が互いに素であるとき,$\displaystyle \frac{n}{m}$を既約分数とよぶ.$10$を分母とする既約分数で,値が$0$より大きく,$1$より小さいものは$[オ]$個あり,それらの総和は$[カ]$である.
また,$62$を分母とする既約分数で,値が$0$より大きく,$1$より小さいものの総和は$[キ]$である.
福岡大学 私立 福岡大学 2016年 第5問
平均値と中央値は共に代表値であり,求め方は全く異なるが比較的近い値であることが多い.いま,偶数個の身長のデータがあり,その最小値は$m=140 \, \mathrm{cm}$,最大値は$M=180 \, \mathrm{cm}$である.このデータの中央値が$A=150 \, \mathrm{cm}$のとき,半数のデータは$m$以上$A$以下の値であり,残る半数のデータは$A$以上$M$以下である.このことから平均値$\overline{x}$のとる値の範囲は$[ ]$である.また,平均値と中央値の関係を用いると,最小値が$m=140 \, \mathrm{cm}$,最大値が$M=180 \, \mathrm{cm}$である偶数個のデータの平均値が$\overline{x}=170 \, \mathrm{cm}$であるとき,中央値$A$の取る値の範囲は$[ ]$である.
福岡大学 私立 福岡大学 2016年 第1問
次の$[ ]$をうめよ.

(1)$4$次方程式$x^4-x^3+ax^2+bx+2=0$が$1$と$-2$を解にもつとき,係数$a,\ b$の値を求めると$(a,\ b)=[ ]$である.また,この方程式の他の解を求めると,$[ ]$である.
(2)袋の中に$1$から$13$までの数が$1$つずつ書かれた$13$個の玉が入っている.この袋の中から,$2$個の玉を同時にとり出す.このとき,とり出した玉に書かれた$2$つの数の和が偶数になる確率は$[ ]$である.また,とり出した玉に書かれた数がどちらも$10$以下であったとき,数の和が偶数である条件付き確率は$[ ]$である.
(3)$3$点$\mathrm{A}(1,\ -1,\ 1)$,$\mathrm{B}(2,\ 1,\ -1)$,$\mathrm{C}(4,\ -5,\ 1)$がある.$2$つのベクトル$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AC}}$のなす角を$\theta$とするとき,$\cos \theta$の値を求めると$\cos \theta=[ ]$である.また,$\triangle \mathrm{ABC}$の面積は$[ ]$である.
福岡大学 私立 福岡大学 2016年 第2問
次の$[ ]$をうめよ.
\begin{mawarikomi}{45mm}{

\begin{tabular}{|c|c|c|c|c|c|}
\hline
& $\mathrm{A}$ & $\mathrm{B}$ & $\mathrm{C}$ & $\mathrm{D}$ & $\mathrm{E}$ \\ \hline
$x$ & $7$ & $3$ & $5$ & $2$ & $3$ \\ \hline
$y$ & $4$ & $5$ & $7$ & $3$ & $6$ \\ \hline
\end{tabular}
}

(1)右の表は,ある中学校の$5$人の生徒$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$,$\mathrm{E}$に$2$つの科目の小テストを行った結果である.$2$つの科目の得点をそれぞれ$x,\ y$とする.
このとき,$x$の分散を求めると$[ ]$であり,$x$と$y$の共分散を求めると$[ ]$である.
(2)三角形$\mathrm{OAB}$において辺$\mathrm{OA}$を$1:2$に内分する点を$\mathrm{P}$,辺$\mathrm{OB}$を$t:1-t$に内分する点を$\mathrm{Q}$とおく(ただし$0<t<1$とする).$\mathrm{AQ}$と$\mathrm{BP}$の交点を$\mathrm{R}$とおく.$\mathrm{BR}=\mathrm{RP}$となるとき,$\overrightarrow{\mathrm{OR}}$を,$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$を用いて表すと,$\overrightarrow{\mathrm{OR}}=[ ]$となり,そのときの$t$の値を求めると$t=[ ]$となる.

\end{mawarikomi}
広島経済大学 私立 広島経済大学 2016年 第1問
次の各問の空欄に当てはまる最も適切な数値を記入せよ.

(1)$a,\ b$を自然数とする.$a$を$9$で割ると$1$余り,$b$を$9$で割ると$5$余る.

(i) $a+b$を$9$で割ったときの余りは$[$1$]$である.
(ii) $ab$を$9$で割ったときの余りは$[$2$]$である.
(iii) $a^2+b^2$を$9$で割ったときの余りは$[$3$]$である.

(2)$2$つの整数$1364$と$279$の最大公約数は$[$4$]$である.
(3)$|x+2|+|x-5|=9$の解は$x=-[$5$]$または$x=[$6$]$である.
(4)分数$\displaystyle \frac{35}{37}$を小数で表したとき,小数第$50$位の数字は$[$7$]$である.
スポンサーリンク

「空欄補充」とは・・・

 まだこのタグの説明は執筆されていません。