タグ「空欄補充」の検索結果

131ページ目:全1740問中1301問~1310問を表示)
福岡大学 私立 福岡大学 2012年 第7問
偶数の列を,次のように第$1$群,第$2$群,第$3$群,$\cdots$に分ける.
\[ 2,\ \bigg| \ 4,\ 6,\ \bigg| \ 8,\ 10,\ 12,\ \bigg| \ \cdots \]
このとき,$2012$を第$n$群の$m$番目の偶数とすると,$n=[ ]$,$m=[ ]$である.
福岡大学 私立 福岡大学 2012年 第8問
奇数の列を,次のように第$1$群,第$2$群,第$3$群,$\cdots$に分ける.
\[ 1,\ \bigg| \ 3,\ 5,\ 7,\ \bigg| \ 9,\ 11,\ 13,\ 15,\ 17,\ \bigg| \ \cdots \]
このとき,$2013$を第$n$群の$m$番目の奇数とすると,$(n,\ m)=[ ]$であり,$2013$が属する第$n$群の奇数の総和は$[ ]$である.
広島修道大学 私立 広島修道大学 2012年 第1問
空欄$[$1$]$から$[$11$]$にあてはまる数値または式を記入せよ.

(1)連立不等式
\[ \left\{ \begin{array}{l}
\displaystyle \frac{1}{3}x-7 \leqq 2 \\ \\
\displaystyle \frac{3}{2}x+3>-\frac{3}{4}x+1
\end{array} \right. \]
の解は$[$1$]$である.
(2)$2$点$(5,\ 1)$,$(-2,\ 4)$を通る直線の方程式は$[$2$]$である.
(3)直線$y=ax-3$が放物線$y=x^2-4x+3a$の接線であるとき,定数$a$の値は$[$3$]$である.
(4)$\displaystyle \sqrt{3} \sin \frac{\pi}{4}-\sqrt{6} \cos \frac{\pi}{3}$の値は$[$4$]$,$\displaystyle \sin \frac{\pi}{9} \sin \frac{\pi}{18}-\cos \frac{\pi}{9} \cos \frac{\pi}{18}$の値は$[$5$]$である.
(5)赤玉が$4$つ,青玉が$3$つ,黄玉が$2$つある.これらすべての玉を$1$列に並べる並べ方は$[$6$]$通りである.これらの玉をすべて$1$つの袋に入れ,そのうち$3$つを同時に取り出すとき,異なる色の玉を取り出す確率は$[$7$]$であり,赤玉$2$つ,青玉$1$つを取り出す確率は$[$8$]$である.また,すべての玉が入った袋から玉を$4$つ同時に取り出すとき,青玉が少なくとも$1$つ含まれる確率は$[$9$]$である.
(6)$2$次関数$f(x)$は,$\displaystyle x=-\frac{3}{4}$で極値をとり,$f(-1)=-2$,$f^\prime(2)=11$を満たす.このとき,$f(x)=[$10$]$であり,$\displaystyle \int_{-1}^2 f(x) \, dx$の値は$[$11$]$である.
広島修道大学 私立 広島修道大学 2012年 第1問
空欄$[$1$]$から$[$11$]$にあてはまる数値または式を記入せよ.

(1)$a,\ b$を実数とする.$2$次方程式$x^2+ax+b=0$の$1$つの解$\alpha$が$1-\sqrt{3}i$のとき,$a=[$1$]$,$b=[$2$]$となる.もう$1$つの解を$\beta$とするとき,$\alpha-2$,$\beta-2$を解とし,$x^2$の係数が$1$である$2$次方程式は$x^2+[$3$]x+[$4$]=0$となる.
(2)$a=\sqrt{3}$のとき,$|a-2|+|a+3|$の値は$[$5$]$である.また,方程式$|x+1|=4$の解は$[$6$]$である.
(3)$2+\sqrt{2}$の整数部分を$a$,小数部分を$b$とするとき,$\displaystyle 2a^2-\left( b^3+\frac{1}{b^3} \right)$の値は$[$7$]$である.
(4)$1$個のさいころを投げて,出た目が奇数なら$2$ポイント,偶数なら$4$ポイント獲得できるゲームがある.$1$回投げて獲得できるポイントの期待値は$[$8$]$である.また,さいころを$3$回投げたとき,獲得したポイントの合計が$12$である確率は$[$9$]$であり,$10$以上である確率は$[$10$]$である.
(5)放物線$y=x^3-3x^2+2$上の点$(1,\ 0)$における接線の方程式は$[$11$]$である.
酪農学園大学 私立 酪農学園大学 2012年 第3問
袋の中に$1$から$5$の番号のついた赤玉と,$1$から$10$の番号のついた白玉が,それぞれ$1$個ずつ入っている.この袋から同時に$2$個の玉を取り出す試行を考える.$A$は少なくとも$1$個が赤玉である事象,$B$は番号の和が奇数となる事象とする.事象$X$の起こる確率を$P(X)$とするとき,積事象$A \cap B$の起こる確率$P(A \cap B)$,和事象$A \cup B$の起こる確率$P(A \cup B)$を求めたい.次の文章中の空欄に値を入れよ.

「玉の取り出し方は全部で$[$1$]$通りある.
$A$の余事象$\overline{A}$の起こる場合の数は$[$2$]$通りだから,$A$の起こる確率は,
\[ P(A)=1-P(\overline{A})=[$3$] \]
となる.
一方,$B$の起こる場合の数は,赤玉$1$個と白玉$1$個を取り出すときは$[$4$]$通り,赤玉$2$個を取り出すときは$[$5$]$通り,白玉$2$個を取り出すときは$[$6$]$通りある.
よって,$B$の起こる確率は,
\[ P(B)=[$7$] \]
となる.したがって,$A \cap B$の起こる確率は,
\[ P(A \cap B)=[$8$] \]
となり,$A \cup B$の起こる確率は,
\[ P(A \cup B)=[$9$] \]
となる.」
成城大学 私立 成城大学 2012年 第2問
$x$が正の整数であるとき,$x^4+4$が素数となりうるかを調べる.$[ ]$に適当な式,または数値を入れよ.

$x^4+4$は,係数が実数の$2$つの$2$次式の積$([$*$]) \times ([$**$])$に因数分解することができる.$x$は正の整数であるから,$[$*$]$も$[$**$]$も,いずれも整数である.もし,$x^4+4$が素数であるとするならば,$[$*$]$と$[$**$]$のうち,いずれか小さい方が,$[ ]$でなければならない.これを解くと,$x=[ ]$であり,このとき,$x^4+4=[ ]$となり,確かに素数となる.
昭和薬科大学 私立 昭和薬科大学 2012年 第2問
数列$\{a_n\}$において,初項$a_1$から第$n$項までの和を$S_n$とし,$S_n$と$a_n$の間に
\[ S_n+3a_n+n-3=0 \]
の関係がある.

(1)初項$a_1$の値は$\displaystyle \frac{[ ]}{[ ]}$である.
(2)$a_{n+1}$と$a_n$の関係は$\displaystyle a_{n+1}=\frac{[ ]}{[ ]}a_n-\frac{[ ]}{[ ]}$である.
(3)数列$\{a_n\}$の一般項は$\displaystyle a_n=[ ] \left( \frac{[ ]}{[ ]} \right)^n-[ ]$である.
青山学院大学 私立 青山学院大学 2012年 第1問
$\mathrm{AB}=4$,$\mathrm{BC}=3$,$\mathrm{AC}=2$である$\triangle \mathrm{ABC}$について,次の問に答えよ.

(1)次の問に答えよ.

(i) $\theta=\angle \mathrm{ACB}$とするとき,$\displaystyle \cos \theta=-\frac{[ア]}{[イ]}$である.
(ii) $\triangle \mathrm{ABC}$の内接円の半径は$\displaystyle \frac{\sqrt{[ウエ]}}{[オ]}$である.

(2)$\triangle \mathrm{ABC}$の内接円と辺$\mathrm{AB}$との接点を$\mathrm{P}$とする.ベクトル$\overrightarrow{\mathrm{CP}}$を$\overrightarrow{a}=\overrightarrow{\mathrm{CA}}$および$\overrightarrow{b}=\overrightarrow{\mathrm{CB}}$を用いて表すと,
\[ \overrightarrow{\mathrm{CP}}=\frac{[カ]}{[キ]} \overrightarrow{a}+\frac{[ク]}{[ケ]} \overrightarrow{b} \]
である.
青山学院大学 私立 青山学院大学 2012年 第2問
$\triangle \mathrm{ABC}$において,$\mathrm{AB}+\mathrm{AC}=1$および$\displaystyle \angle \mathrm{ABC}=\frac{\pi}{2}$が成り立つとする.

$\mathrm{AB}=x$とすると,$x$のとり得る値の範囲は$\displaystyle [ケ]<x<\frac{[コ]}{[サ]}$であり,$\mathrm{BC}$を$x$を用いて表すと$\mathrm{BC}=\sqrt{[シ]-[ス]x}$である.このとき$\triangle \mathrm{ABC}$の面積を$f(x)$とおくと,その導関数は
\[ f^\prime(x)=\frac{1}{\sqrt{[シ]-[ス]x}} \left( \frac{[セ]}{[ソ]}-\frac{[タ]}{[チ]}x \right) \]
であるので,$\displaystyle x=\frac{[ツ]}{[テ]}$のとき$f(x)$は最大となる.このとき$\displaystyle \angle \mathrm{BCA}=\frac{[ト]}{[ナ]} \pi$である.
東北医科薬科大学 私立 東北医科薬科大学 2012年 第1問
関数$y=1-x^2$,$y=4+3x-x^2$を考える.このとき,次の問に答えなさい.

(1)不等式$0 \leqq y \leqq 1-x^2$で表される領域の面積は$\displaystyle \frac{[ア]}{[イ]}$である.また,不等式
\[ y \geqq 1-x^2,\quad y \leqq 4+3x-x^2,\quad y \geqq 0 \]
で表される領域の面積は$\displaystyle \frac{[ウエ]}{[オ]}$である.
(2)曲線$y=1-x^2$上の点$\mathrm{P}(k,\ 1-k^2)$における接線を$\ell$とおく.このとき接線$\ell$が曲線$y=4+3x-x^2$と異なる$2$点で交わるような$k$の値の範囲は$\displaystyle \frac{[カキ]}{[ク]}<k$である.また,このとき交点の$x$座標の値を$\alpha$,$\beta$とおくと
\[ \alpha+\beta=[ケ]+[コ]k,\quad \alpha\beta=[サシ]+k^{[ス]} \]
である.
(3)接線$\ell$と曲線$y=4+3x-x^2$で囲まれる領域の面積が$\displaystyle \frac{125}{6}$となる$k$の値は$\displaystyle \frac{[セ]}{[ソ]}$である.
スポンサーリンク

「空欄補充」とは・・・

 まだこのタグの説明は執筆されていません。