タグ「空欄補充」の検索結果

125ページ目:全1740問中1241問~1250問を表示)
西南学院大学 私立 西南学院大学 2012年 第3問
$x^3=1$の解のうち,虚数であるものの$1$つを$\omega$とするとき,以下の問に答えよ.

(1)$\displaystyle \frac{1}{\omega}+\frac{1}{\omega^2}+\frac{1}{[ナ]}=-\frac{2}{3}$である.

(2)$\omega$に共役な複素数を$\overline{\omega}$とするとき,$(\overline{\omega}^4+3 \omega+1)(\omega^4+\overline{\omega}+3)=[ニ] \omega$である.
(3)$\omega+1$および$\overline{\omega}+1$を解とする$x$の$2$次方程式の$1$つは$x^2+[ヌネ]x+[ノ]=0$である.
西南学院大学 私立 西南学院大学 2012年 第4問
青いボールが$2$個,黄色いボールが$2$個,赤いボールが$3$個ある.これら$7$個のボールから$4$個を取り出すとき,以下の問に答えよ.ただし,ボールは,色の違いの他には区別がないものとする.

(1)$4$個を取り出す組合せは全部で$[ハ]$通りである.
(2)取り出した$4$個のボールを$2$個ずつに分けるとき,分け方は全部で$[ヒフ]$通りである.
(3)$\mathrm{A}$と$\mathrm{B}$という箱がある.取り出した$4$個のボールをこれらの箱に$2$個ずつ入れるとき,入れ方は全部で$[ヘホ]$通りである.
西南学院大学 私立 西南学院大学 2012年 第4問
以下の問に答えよ.

(1)関数$f(x)=2^2 \cdot 2^x+2^{-x}$の最小値は$[ハ]$である.
(2)関数$g(x)=16 \cdot 4^x+4^{-x}-40 \cdot 2^x-10 \cdot 2^{-x}+40$は,$x=[ヒフ]$または$[ヘ]$のとき最小値$[ホ]$をとる.ただし,$[ヒフ]<[ヘ]$である.
慶應義塾大学 私立 慶應義塾大学 2012年 第2問
$\mathrm{O}$を原点とする座標空間において,$4$点
\[ \mathrm{A}_1(1,\ 1,\ 1),\quad \mathrm{B}_1(-1,\ -1,\ 1),\quad \mathrm{C}_1(1,\ -1,\ -1),\quad \mathrm{D}_1(-1,\ 1,\ -1) \]
を考えると,立体$\mathrm{A}_1 \mathrm{B}_1 \mathrm{C}_1 \mathrm{D}_1$は正四面体である.このとき,以下の設問に答えよ.

(1)正四面体$\mathrm{A}_1 \mathrm{B}_1 \mathrm{C}_1 \mathrm{D}_1$を$xy$平面に平行な平面$z=-1+h (0 \leqq h \leqq 2)$で切ったときに出来る図形の面積を$S(h)$とすると,
\[ S(h)=-[$34$]h^2+[$35$]h \]
と表され,$S(h)$は$h=[$36$]$のとき最大値$[$37$]$をとる.(このときの図形はペトリー多角形と呼ばれている.)さらに,
\[ V_1=\int_0^2 S(h) \, dh=\frac{[$38$]}{[$39$]} \]
とおくと,$V_1$は正四面体$\mathrm{A}_1 \mathrm{B}_1 \mathrm{C}_1 \mathrm{D}_1$の体積となっている.
(2)三角形$\mathrm{B}_1 \mathrm{C}_1 \mathrm{D}_1$,三角形$\mathrm{C}_1 \mathrm{D}_1 \mathrm{A}_1$,三角形$\mathrm{D}_1 \mathrm{A}_1 \mathrm{B}_1$,三角形$\mathrm{A}_1 \mathrm{B}_1 \mathrm{C}_1$の重心をそれぞれ$\mathrm{A}_2$,$\mathrm{B}_2$,$\mathrm{C}_2$,$\mathrm{D}_2$とする.このとき,立体$\mathrm{A}_2 \mathrm{B}_2 \mathrm{C}_2 \mathrm{D}_2$は再び,正四面体となる.(このことを,正四面体は自己双対であるという.)同様に,$n$を自然数として,三角形$\mathrm{B}_n \mathrm{C}_n \mathrm{D}_n$,三角形$\mathrm{C}_n \mathrm{D}_n \mathrm{A}_n$,三角形$\mathrm{D}_n \mathrm{A}_n \mathrm{B}_n$,三角形$\mathrm{A}_n \mathrm{B}_n \mathrm{C}_n$の重心をそれぞれ$\mathrm{A}_{n+1}$,$\mathrm{B}_{n+1}$,$\mathrm{C}_{n+1}$,$\mathrm{D}_{n+1}$とする.このとき,
\[ \overrightarrow{\mathrm{OA}}_1+\overrightarrow{\mathrm{OA}}_2+\cdots +\overrightarrow{\mathrm{OA}}_n=\frac{[$40$]}{[$41$]} \left\{ 1-\left( -\frac{[$42$]}{[$43$]} \right)^n \right\} \overrightarrow{\mathrm{OA}}_1 \]
である.また,正四面体$\mathrm{A}_n \mathrm{B}_n \mathrm{C}_n \mathrm{D}_n$の表面積$S_n$と体積$V_n$は,それぞれ,
\[ S_n=[$44$] \cdot [$45$]^{-[$46$]n+\frac{[$47$]}{2}},\quad V_n=[$48$] \cdot [$49$]^{-[$50$]n+[$51$]} \]
である.
上智大学 私立 上智大学 2012年 第3問
大きさの同じ$N$個の正方形を,図$1$のように左端からつめて高さを$3$段までに並べる.このとき,各段の正方形の数はその$1$つ下の段の正方形の数以下とする.例えば,$N=4$の場合,図$2$のように$4$通りの並べ方がある.

(1)上のような並べ方は,$N=5$のとき$[ノ]$通り,$N=6$のとき$[ハ]$通り,$N=7$のとき$[ヒ]$通りである.
(2)高さが$2$段までの並べ方は,

$N$が偶数のとき,$\displaystyle \left( \frac{[フ]}{[ヘ]}N+[ホ] \right)$通り,

$N$が奇数のとき,$\displaystyle \left( \frac{[マ]}{[ミ]}N+\frac{[ム]}{[メ]} \right)$通りである.

(3)$N=6n$($n$は自然数)のとき,高さが$3$段までの並べ方を考える.$3$段目の正方形が$m$個であるような並べ方が$a_m$通りあるとする.図$1$は$N=12$,$m=3$のときの並べ方の一例である.
$m$が偶数のとき,
\[ a_m=[モ]n+\frac{[ヤ]}{[ユ]}m+[ヨ] \]
$m$が奇数のとき,
\[ a_m=[ラ]n+\frac{[リ]}{[ル]}m+\frac{[レ]}{[ロ]} \]
である.したがって,$N=6n$のとき,高さが$3$段までの並べ方は全部で
\[ [ワ]n^2+[ヲ]n+[ン] \]
通りである.

(図は省略)
西南学院大学 私立 西南学院大学 2012年 第2問
袋の中に$4$枚のカードが入っており,それぞれのカードには$1,\ 2,\ 3,\ 4$の数字が書かれている.いま袋から$1$枚カードを取り出しては,そのつど袋に戻すという試行を何回か繰り返す.このとき,最後に取り出したカードに書かれた数が,得点になるものとする.以下の問に答えよ.

(1)試行が一度だけのとき,得点の期待値は$\displaystyle \frac{[キ]}{[ク]}$である.
(2)試行を二度行う権利を有するとき(試行を一度でやめても,二度目を行ってもよいとき),得点の期待値を最大にするには,$(1)$の結果より,一度目の数字$x$が$[ケ]$以下のときは二度目を行い,$x$が$[コ]$以上のときは一度でやめればよい.したがって,得点の期待値の最大値は$[サ]$となる.
上智大学 私立 上智大学 2012年 第3問
一辺の長さが$1$の正四面体$\mathrm{OABC}$を考える.底面$\mathrm{ABC}$の内接円の半径を$r$とおき,頂点$\mathrm{O}$を通り底面$\mathrm{ABC}$に垂直な直線からの距離が$r$以下である点全体からなる円柱を$T$とする.

(1)$\displaystyle r=\frac{\sqrt{[ネ]}}{[ノ]}$である.
(2)正四面体$\mathrm{OABC}$の高さは$\displaystyle \frac{\sqrt{[ハ]}}{[ヒ]}$である.
(3)辺$\mathrm{AB}$の中点と頂点$\mathrm{O}$とを結ぶ線分上に点$\mathrm{P}$をとり,$x=\mathrm{OP}$とおく.$\mathrm{P}$を通り底面$\mathrm{ABC}$に平行な平面による側面$\mathrm{OAB}$の切り口を$L$とする.
$L$が$T$に含まれるような$x$の最大値を$x_1$とすると
\[ x_1=\frac{\sqrt{[フ]}}{[ヘ]} \]
である.
$\displaystyle x_1 \leqq x \leqq \frac{\sqrt{3}}{2}$のとき,$L$と$T$の共通部分の長さは
\[ \frac{[ホ]}{[マ]} \sqrt{\frac{[ミ]}{[ム]}-x^2} \]
である.
正四面体$\mathrm{OABC}$の表面で$T$に含まれる部分の面積は
\[ \frac{\pi}{[メ]} \]
である.
上智大学 私立 上智大学 2012年 第4問
$\log x$は自然対数,$e$は自然対数の底を表す.

(1)$a,\ b$は$e^{-1}<a<1,\ b>0$を満たす実数とする.曲線$C:y=\log x$と直線$\ell:y=ax+b$とが接しているとすると,
\[ b=[モ] \log a+[ヤ] \]
が成り立つ.このとき,曲線$C$と$3$つの直線$\ell$,$x=1$,$x=e$とで囲まれた図形の面積を$S(a)$とする.$a$が$e^{-1}<a<1$の範囲を動くときの$S(a)$の最小値は
\[ \left( [ユ]e+[ヨ] \right) \log \left( \frac{e+[ラ]}{[リ]} \right) +[ル] \]
で与えられる.
(2)$k$を正の定数とし,$e^{-k}<t<1$である$t$に対して,
\[ f(t)=\int_0^k |e^{-x|-t} \, dx \]
とおく.$t$が$e^{-k}<t<1$の範囲を動くときの関数$f(t)$の最小値を$M(k)$とおくと,
\[ M(k)=\left( [レ]+e^P \right)^2,\quad \text{ただし} P=\frac{[ロ]}{[ワ]}k \]
となる.このとき
\[ \lim_{k \to +0} \frac{M(k)}{k^2}=\frac{[ヲ]}{[ン]} \]
である.
上智大学 私立 上智大学 2012年 第3問
座標平面上の点$(x,\ y)$のうち,$x,\ y$がともに整数である点を格子点とよぶ.いま,格子点の集合$A$を次のように定義する.
\[ A=\{(x,\ y) \;|\; x \geqq 0,\ y \geqq 0,\ 16<x^2+y^2 \leqq 36,\ x \text{と} y \text{は整数} \} \]

(1)$A$の点は全部で$[ム]$個ある.
(2)格子点上を$1$秒間に右または上に$1$動く点$\mathrm{P}$を考える.$\mathrm{P}$は原点から出発し,$A$の点の$1$つに到達したら停止する.このとき,$\mathrm{P}$が到達できない$A$の点は全部で$[メ]$個ある.以下,$\mathrm{P}$が到達できる$A$の部分集合を$A_0$とする.
(3)$(2)$で考えた点$\mathrm{P}$が右に動く確率と上に動く確率をともに$\displaystyle \frac{1}{2}$とする.また,各格子点における$\mathrm{P}$の動きは,その点に至るまでの動き方と独立に決まるものとする.

(i) 原点からの経路の数が最も多い$A_0$の点は$\mathrm{Q}([モ],\ [ヤ])$であり,$\mathrm{P}$が$\mathrm{Q}$に到達する確率は$\displaystyle \frac{[ユ]}{[ヨ]}$である.
(ii) 原点からの経路の数が$\mathrm{Q}$の次に多い$A_0$の点は全部で$[ラ]$個あり,それらの点のいずれかで$\mathrm{P}$が停止する確率は$\displaystyle \frac{[リ]}{[ル]}$である.
(iii) $\mathrm{P}$が$A_0$の点のいずれかで停止するまでの時間の期待値は$\displaystyle \frac{[レ]}{[ロ]}$秒である.
上智大学 私立 上智大学 2012年 第3問
$1$から$9$までの数字が$1$つずつ書かれた$9$枚のカードがある.これらを$3$枚ずつ$3$つのグループに無作為に分け,それぞれのグループから最も大きい数が書かれたカードを取り出す.

(1)取り出された$3$枚のカードの中に$9$が書かれたカードが含まれる確率は$\displaystyle \frac{[ミ]}{[ム]}$である.

(2)取り出された$3$枚のカードの中に$8$が書かれたカードが含まれる確率は$\displaystyle \frac{[メ]}{[モ]}$である.

(3)取り出された$3$枚のカードの中に$3$が書かれたカードが含まれる確率は$\displaystyle \frac{[ヤ]}{[ユ]}$である.

(4)取り出された$3$枚のカードの中に$6$が書かれたカードが含まれる確率は$\displaystyle \frac{[ヨ]}{[ラ]}$である.

(5)取り出された$3$枚のカードに書かれた数の中で,最小の数が$6$である確率は$\displaystyle \frac{[リ]}{[ル]}$である.
スポンサーリンク

「空欄補充」とは・・・

 まだこのタグの説明は執筆されていません。