タグ「確率分布」の検索結果

1ページ目:全8問中1問~10問を表示)
鹿児島大学 国立 鹿児島大学 2014年 第7問
$2$つの確率変数$X,\ Y$の確率分布を同時に考えた表(同時確率分布表)が下のように与えられている.ただし,$X,\ Y$は互いに独立であり,$0<a<1$,$0<b<1$とする.このとき,次の各問いに答えよ.
(図は省略)

(1)表を完成させ,完成させた表を書け.
(2)確率変数$W=X-Y$の平均$E(W)$を求めよ.
(3)確率変数$\displaystyle Z=\frac{Y}{X}$の確率分布表を作成し,$Z$の平均$E(Z)$を求めよ.
(4)$\displaystyle E(Z)=\frac{9}{4},\ E(W)=-\frac{3}{2}$となる場合に,$Z$の分散$V(Z)$を求めよ.
浜松医科大学 国立 浜松医科大学 2014年 第3問
以下の問いに答えよ.

(1)$r$は自然数,$n$は$r$より大きい整数とする.$2$項係数$\comb{k+r}{r} (k=0,\ 1,\ \cdots,\ n-r)$の次の等式を示せ.
\[ \sum_{k=0}^{n-r} \comb{k+r}{r}=\comb{n+1}{r+1} \]
以下整数$n (n \geqq 2)$に対し,次の確率分布に従う確率変数$X$を考える.
\[ P(X=k)=\frac{\comb{k+1}{1}}{\comb{n+1}{2}} \quad (k=0,\ 1,\ \cdots,\ n-1) \]
(2)$X$の期待値$\mu_n=E(X)$を求めよ.また,$\displaystyle P(X \geqq m) \geqq \frac{1}{2}$を満たす最大の整数$m$を$M_n$とするとき,極限値$\displaystyle \lim_{n \to \infty} \frac{M_n}{\mu_n}$を求めよ.
鹿児島大学 国立 鹿児島大学 2014年 第8問
次の各問いに答えよ.

(1)数字$1$が書かれた玉$a$個($a \geqq 1$)と,数字$2$が書かれた玉$1$個がある.これら$a+1$個の玉を母集団として,玉に書かれている数字を変量とする.このとき,この母集団から復元抽出によって大きさ$3$の無作為標本を抽出し,その玉の数字を取り出した順に$X_1$,$X_2$,$X_3$とする.標本平均$\displaystyle \overline{X}=\frac{X_1+X_2+X_3}{3}$の平均$E(\overline{X})$が$\displaystyle \frac{3}{2}$であるとき,$\overline{X}$の確率分布とその分散$V(\overline{X})$を求めよ.ただし,復元抽出とは,母集団の中から標本を抽出するのに,毎回もとに戻してから次のものを$1$個取り出す抽出法である.
(2)ある企業の入社試験は採用枠$300$名のところ$500$名の応募があった.試験の結果は$500$点満点の試験に対し,平均点$245$点,標準偏差$50$点であった.得点の分布が正規分布であるとみなされるとき,合格最低点はおよそ何点であるか.小数点以下を切り上げて答えよ.ただし,確率変数$Z$が標準正規分布に従うとき,$P(Z>0.25)=0.4$,$P(Z>0.5)=0.3$,$P(Z>0.54)=0.2$とする.
鹿児島大学 国立 鹿児島大学 2013年 第7問
$0,\ 1,\ 2,\ 3,\ 4$の数字が$1$つずつ記入された$5$枚のカードがある.この$5$枚のカードの中から$1$枚引き,数字を記録して戻すという作業を$3$回繰り返す.ただし,$3$回ともどのカードを引く確率も等しいとする.記録した$3$つの数字の最小値を$X$とするとき,次の各問いに答えよ.

(1)$k=0,\ 1,\ 2,\ 3,\ 4$に対して確率$P(X \geqq k)$を求めよ.
(2)確率変数$X$の確率分布を表で表せ.
(3)確率変数$X$の平均(期待値)$E(X)$を求めよ.
(4)確率変数$X$の分散$V(X)$を求めよ.
宮城大学 公立 宮城大学 2013年 第3問
次の空欄$[ナ]$から$[ヘ]$にあてはまる数や式を書きなさい.

ゆがんだサイコロがあり,各々の目の出る確率は下記の確率分布表の通りである.

確率分布表 \quad
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline
目 & $1$ & $2$ & $3$ & $4$ & $5$ & $6$ \\ \hline
確率 & $\displaystyle\frac{1}{9}$ & $\displaystyle\frac{4}{45}$ & $p$ & $q$ & $\displaystyle\frac{1}{35}$ & $r$ \\ \hline
\end{tabular}

また,このサイコロを$6$回投げたとき,次のような$2$つのデータ$(ⅰ)$,$(ⅱ)$が残った.
データ$(ⅰ) \cdots 4$回目に投げたとき$2$度目の$3$の目になる確率が$\displaystyle \frac{4}{27}$であった.
データ$(ⅱ) \cdots$出る目の期待値が$\displaystyle \frac{1153}{315}$であった.
このとき,以下の問いに答えなさい.ただし,$\displaystyle \frac{1}{35}<\frac{4}{45}<\frac{1}{9}<q<r<p<\frac{2}{3}$とする.
まず,確率分布表から,$p+q+r=[ナ] \cdots\cdots ①$である.
次に,データ$(ⅰ)$は$3$の目が$3$回目までに既に$1$回だけ出ていることを示すから,
\[ [ニ]=\frac{4}{27} \]
となる.
これより,次の$2$次方程式が得られる.
\[ [ヌ]=0 \]
条件より,$\displaystyle p<\frac{2}{3}$だから,$p=[ネ]$である.すると$①$から,
\[ q+r=[ノ] \cdots\cdots② \]
となる.
データ$(ⅱ)$から,期待値の式を$p,\ q,\ r$を用いて表せば,
\[ [ハ]=\frac{1153}{315} \]
である.
ゆえに,$p=[ネ]$を適用して,
\[ 2q+3r=[ヒ] \cdots\cdots③ \]
となる.$②$と$③$を連立して,$q=[フ]$,$r=[ヘ]$を得る.
帯広畜産大学 国立 帯広畜産大学 2012年 第1問
等式
\[ \begin{array}{lrr}
c=\sin 2\theta-2 \cos \theta & &\cdots\cdots① \\
\log_y(x-3)+\log_y(x+1)-1=0 \quad (y>0,\ y \neq 1) & & \cdots\cdots②
\end{array} \]
について,次の各問に解答しなさい.

(1)$①$式について,$\sin \theta+\cos \theta=1$とする.

(i) $\sin \theta$と$\cos \theta$のとりうる値を求めなさい.
(ii) $c$のとりうる値を求めなさい.
(iii) 1個のサイコロを投げるとき,2以下の目が出れば$\sin \theta=0$,3以上の目が出れば$\sin \theta=1$とする.$c$の確率分布を求め,さらに,$c$の平均と分散を求めなさい.

(2)$①$式について,$\displaystyle c=-\frac{\sqrt{3}}{2},\ \sin \theta=\frac{1}{2}$とする.

(i) $0 \leqq \theta \leqq \pi$のとき,$\tan \theta$および$\theta$の値を求めなさい.
(ii) $0 \leqq \theta \leqq 10\pi$のとき,$\theta$がとりうるすべての値の合計を求めなさい.

(3)$②$式について,$y$を$x$の関数として$y=f(x)$と表す.

(i) 関数$f(x)$を$x$で表し,$x$のとりうる値の範囲を求めなさい.
(ii) $y=a$とするとき,$x$の値を$a$で表しなさい.ただし,$a$は$a>0,\ a \neq 1$を満たす定数である.
鹿児島大学 国立 鹿児島大学 2010年 第7問
袋の中に1の数字が書かれている球が5個,2の数字が書かれている球が3個,5の数字が書かれている球が2個の合計10個の球が入っている.1個の球を取り出して,その球に書かれている数を確認し,もとに戻すことを繰り返す.$i$回目に取り出した球に書かれている数を$X_i$とする.このとき,次の各問いに答えよ.

(1)$X_1$の確率分布を表で表せ.また,$X_1$の平均と分散を求めよ.
(2)$Z=X_1+X_2$の確率分布を表で表せ.また,確率$P(Z \leqq 4)$の値を求めよ.
(3)$W=X_1-X_2$とするとき,
\[ P(W \leqq a) \leqq P(Z \leqq 4) \]
を満たす整数$a$の最大値を求めよ.
(4)$S=X_1+X_2+\cdots +X_n$が$n+1$となる確率を求めよ.
鹿児島大学 国立 鹿児島大学 2010年 第8問
数字1が書かれたカードが1枚,数字2が書かれたカードが2枚,数字3が書かれたカードが1枚の合計4枚のカードがある.この4枚のカードを母集団とし,カードに書かれている数字を変量とする.このとき,次の各問いに答えよ.ただし,母集団の中から標本を抽出するのに,毎回もとに戻してから次のものを1個ずつ取り出すことを復元抽出といい,取り出したものをもとに戻さずに続けて抽出することを非復元抽出という.

(1)母平均$m$と母標準偏差$\sigma$を求めよ.
(2)この母集団から,非復元抽出によって,大きさ2の無作為標本を抽出し,そのカードの数字を取り出した順に$Y_1$,$Y_2$とする.標本平均$\displaystyle \overline{Y}=\frac{Y_1+Y_2}{2}$の確率分布,期待値$E(\overline{Y})$,標準偏差$\sigma(\overline{Y})$を求めよ.
(3)この母集団から,復元抽出によって,大きさ200の無作為標本を抽出し,その標本平均を$\overline{X}$とする.このとき,標本平均$\overline{X}$が近似的に正規分布に従うとみなすことができるとして,$P(\overline{X}<a)=0.05$を満たす定数$a$を求めよ.ただし,確率変数$Z$が標準正規分布$N(0,\ 1)$に従うとき,$P(Z>1.65)=0.05$とする.
スポンサーリンク

「確率分布」とは・・・

 まだこのタグの説明は執筆されていません。