タグ「矛盾」の検索結果

1ページ目:全3問中1問~10問を表示)
獨協医科大学 私立 獨協医科大学 2016年 第4問
次の問いに答えなさい.ただし,$[チ]$には$[$\mathrm{X]$}$~$[$\mathrm{Z]$}$に入る言葉の組合せとして最も適切なものを,下の選択肢$\nagamaruichi$~$\nagamaruroku$のうちから一つ選びなさい.

複素数$\alpha$を$\alpha=-7+4 \sqrt{3}i$とし,実数の数列$\{a_n\}$と$\{b_n\}$を
\[ a_n+4 \sqrt{3} b_n i=\alpha^n \quad (n=1,\ 2,\ 3,\ \cdots) \]
で定める.ただし,$i$は虚数単位である.$a_n$と$b_n$を$\alpha$とその共役な複素数$\overline{\alpha}$で表すと
\[ a_n=\frac{\alpha^n+(\overline{\alpha})^n}{[ア]},\quad b_n=\frac{\alpha^n-(\overline{\alpha})^n}{[イ] \sqrt{[ウ]}i} \]
となるので,数列$\{a_n\}$と$\{b_n\}$は漸化式

$a_{n+2}+[エオ]a_{n+1}+[カキ]a_n=0 \quad \cdots\cdots \ ①$
$b_{n+2}+[エオ]b_{n+1}+[カキ]b_n=0 \quad\;\;\!\! \cdots\cdots \ ②$

を満たす.これらを用いて,すべての自然数$n$に対して

$a_n$と$b_n$が互いに素な整数である $\quad \cdots\cdots \ (*)$

ことを,数学的帰納法により証明する.

(i) $n=1,\ 2$のとき
\[ a_1=[クケ],\quad b_1=[コ],\quad a_2=[サ],\quad b_2=[シスセ] \]
であるから,$(*)$が成り立つ.
(ii) $n=k,\ k+1$のとき$(*)$が成り立つと仮定する.
まず$①,\ ②$より,$a_{k+2},\ b_{k+2}$は$[$\mathrm{X]$}$である.ここで
\[ {a_n}^2+48{b_n}^2=[ソタ]^n \quad \cdots\cdots \ ③ \]
がすべての自然数$n$で成り立つ.$[ソタ]$が$[$\mathrm{Y]$}$であるから,$a_{k+2},\ b_{k+2}$が$[$\mathrm{Z]$}$と仮定すると$③$より,これら$2$数は$[ソタ]$の倍数でなければならない.ところが,このとき$①,\ ②$より$a_{k+1},\ b_{k+1}$は$[ソタ]$の倍数となり,数学的帰納法の仮定と矛盾する.よって,$n=k+2$のときも$(*)$が成り立つ.

$(ⅰ),\ (ⅱ)$より,すべての自然数$n$について$(*)$が成り立つ.

$[チ]$の選択肢
\[ \begin{array}{ccccccccc}
& \mathrm{X} & \mathrm{Y} & \mathrm{Z} & & & \mathrm{X} & \mathrm{Y} & \mathrm{Z} \\
\nagamaruichi & \text{整数} & \text{素数} & \text{互いに素でない} & & \nagamaruni & \text{整数} & \text{素数} & \text{互いに素である} \\
\nagamarusan & \text{素数} & \text{素数} & \text{互いに素でない} & & \nagamarushi & \text{整数} & \text{整数} & \text{互いに素である} \\
\nagamarugo & \text{素数} & \text{整数} & \text{互いに素でない} & & \nagamaruroku & \text{素数} & \text{整数} & \text{互いに素である}
\end{array} \]
信州大学 国立 信州大学 2013年 第2問
\begin{align}
& \nonumber
\end{align}

\begin{screen}
自然数$a_1,\ a_2$が,
\[ a_1 \leqq a_2,\quad a_1+a_2=a_1a_2 (1) \]
を満たすとき,$a_1,\ a_2$を次のように求めることができる. \\ \\
{\bf 解法} \\
(1)の2式の両辺を$a_1a_2$で割ると
\[ \frac{1}{a_2} \leqq \frac{1}{a_1},\quad \frac{1}{a_1}+\frac{1}{a_2}=1 \]
を得る.よって,この2つの式を組み合わせて
\[ 1=\frac{1}{a_1}+\frac{1}{a_2} \leqq \frac{1}{a_1}+\frac{1}{a_1}=\frac{2}{a_1} \]
を得る.これより$a_1 \leqq 2$である.$a_1=1$のとき,これを(1)の右の式に代入すると$1+a_2=a_2$となって矛盾する.$a_1=2$のとき,これを(1)の右の式に代入すると$a_2=2$となる.逆に$a_1=a_2=2$は(1)の2式を満たす.よって$a_1=a_2=2$となる.
\end{screen}
必要があれば上の解法を参考にして,自然数$a_1,\ a_2,\ a_3$が
\[ a_1 \leqq a_2 \leqq a_3,\quad a_1+a_2+a_3=a_1a_2a_3 \]
を満たすとき,$a_1,\ a_2,\ a_3$を求めよ.
早稲田大学 私立 早稲田大学 2011年 第2問
次の問に答えよ.

(1)$a,\ b$は整数で,$2$次方程式
\[ x^2 + ax + b= 0 \dotnum{A} \]
が異なる$2$つの実数解$\alpha,\ \beta$をもつとする.このとき,$\alpha,\ \beta$はともに整数であるか,ともに無理数であるかのいずれかであることを証明する.以下の問に答え,証明を完成させよ.\\
\quad まず,$b=0$のときは,$x^2+ax=0$であるから\maru{A}は整数解$0,\ -a$をもつ.以下では$ b \neq 0$とする.\\
\quad 解と係数の関係より,$\alpha + \beta = -a,\ \alpha\beta = b$であり,これらは整数である.有理数と無理数の和は有理数でなく,整数と整数以外の有理数の和は整数ではないという事実を用いると,$\alpha,\ \beta$がともに整数以外の有理数であるとして矛盾を導けばよい.\\
\quad そこで,$\alpha,\ \beta$が2以上の整数$p_1,\ p_2$と0でない整数$q_1,\ q_2$を用いて,既約分数
\[ \alpha = \frac{q_1}{p_1},\quad \beta = \frac{q_2}{p_2} \]
で表されると仮定する.ここに,$\displaystyle\frac{q_i}{p_i}\ (i=1,\ 2)$が既約分数であるとは,$p_i$と$|q_i|$の最大公約数が1であることをいう.このとき,
\[ \alpha + \beta = \frac{p_2q_1+p_1q_2}{p_1p_2} \cdots\cdots① \]
\[ \alpha\beta = \frac{q_1q_2}{p_1p_2} \cdots\cdots② \]
である.

(i) $①$において,$\alpha+\beta$が整数であることを用いて,$p_1=p_2$であることを示せ.
(ii) $②$において,$\alpha\beta$が整数であることと問\maru{1}の結果から,既約分数の仮定に矛盾することを示せ.

$(ⅱ)$の結果から,$\alpha,\ \beta$はともに整数であるか,ともに無理数であることが示された.
(2)$c$が自然数のとき,$\sqrt{c}$は自然数であるか無理数であることを証明せよ.
スポンサーリンク

「矛盾」とは・・・

 まだこのタグの説明は執筆されていません。