タグ「直線」の検索結果

90ページ目:全2462問中891問~900問を表示)
北星学園大学 私立 北星学園大学 2014年 第2問
$\triangle \mathrm{ABC}$の頂点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$と三角形の外部にある点$\mathrm{O}$を結ぶ各直線が,三角形の対辺またはその延長上と交わる点をそれぞれ$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$とする.ただし,点$\mathrm{O}$は三角形の辺上にも,その延長上にもないものとする.
(図は省略)

(1)三角形の面積比$\triangle \mathrm{AOB}:\triangle \mathrm{AOC}$および$\triangle \mathrm{BOC}:\triangle \mathrm{BOA}$を線分$\mathrm{BP}$,$\mathrm{CP}$,$\mathrm{AQ}$,$\mathrm{CQ}$の長さを用いて求めよ.
(2)$\displaystyle \frac{\mathrm{AR}}{\mathrm{AB}} \cdot \frac{\mathrm{BP}}{\mathrm{PC}} \cdot \frac{\mathrm{CO}}{\mathrm{OR}}=1$となることを証明せよ.
(3)$\mathrm{AB}=5$,$\mathrm{BC}=8$,$\mathrm{AR}=4$,$\mathrm{CP}=3$のとき,比$\mathrm{RO}:\mathrm{CO}$を求めよ.
東北医科薬科大学 私立 東北医科薬科大学 2014年 第1問
放物線$y=-x^2+8x$と直線$y=2x+t (t \geqq 0)$と直線$x=0$,$x=6$とで囲まれた図形の面積を$S(t)$とする.このとき,次の問に答えなさい.

(1)$S(12)=[アイ]$である.
(2)$S(t)$が$3$つの部分の面積の和になるのは$[ウ]<t<[エ]$のときである.このとき$S(t)$は
\[ [オ](t-[カ])+\frac{[キ]}{[ク]}([ケ]-t) \sqrt{[ケ]-t} \]
である.
(3)以下$[ウ]<t<[エ]$で考える.$A=\sqrt{[ケ]-t}$とおく.$S(t)$を$A$で表すと
\[ S(t)=\frac{[コ]}{[サ]}A^3-[シ]A^2+[スセ] \]
となる.また$\displaystyle A=\frac{[ソ]}{[タ]}$のとき$S(t)$は最小値$\displaystyle \frac{[チツ]}{[テ]}$をとる.
東北工業大学 私立 東北工業大学 2014年 第1問
$x$の$2$次関数$y=x^2-4px+(4p+5)(p-1)$について考える.

(1)この関数のグラフの軸は直線$x=[ア][イ]p$である.
(2)$p=3$のとき,この関数は最小値$-[ウ][エ]$をとり,そのグラフと$y$軸との交点の$y$座標は$[オ][カ]$である.
(3)この関数のグラフが$x$軸の正の部分と異なる$2$点で交わるとき,$[キ][ク]<p<[ケ][コ]$である.
埼玉工業大学 私立 埼玉工業大学 2014年 第3問
曲線$\ell:y=\log x (1 \leqq x \leqq 2)$上の点$(t,\ \log t)$における$\ell$の接線の方程式は
\[ y=\frac{[ハ]}{t}x+\log t-[ヒ] \]
であり,この接線と直線$x=1$,$x=2$および$\ell$で囲まれた図形の面積$S$は,
\[ S=\frac{[フ]}{2t}+\log t-[ヘ] \log 2 \]
である.$\displaystyle t=\frac{[ホ]}{[マ]}$のとき,$S$は最小値$\displaystyle 1+\log \frac{[ミ]}{[ム]}$をとる.
甲南大学 私立 甲南大学 2014年 第2問
座標空間に原点$\mathrm{O}$,点$\mathrm{A}(5,\ 1,\ 0)$,点$\mathrm{B}(2,\ 3,\ 0)$があり,線分$\mathrm{AB}$を$1:2$に内分する点を$\mathrm{P}$とする.このとき,以下の問いに答えよ.

(1)ベクトル$\overrightarrow{\mathrm{OP}}$を求めよ.
(2)点$\mathrm{P}$を通り$z$軸に平行な直線をとる.その直線上において$z$座標が正となる点$\mathrm{Q}$をとる.このとき,$\overrightarrow{\mathrm{AQ}} \perp \overrightarrow{\mathrm{BQ}}$となるような点$\mathrm{Q}$を求めよ.
(3)$(2)$で求めた点$\mathrm{Q}$に対して,四面体$\mathrm{OABQ}$の体積を求めよ.
甲南大学 私立 甲南大学 2014年 第2問
座標空間に原点$\mathrm{O}$,点$\mathrm{A}(5,\ 1,\ 0)$,点$\mathrm{B}(2,\ 3,\ 0)$があり,線分$\mathrm{AB}$を$1:2$に内分する点を$\mathrm{P}$とする.このとき,以下の問いに答えよ.

(1)ベクトル$\overrightarrow{\mathrm{OP}}$を求めよ.
(2)点$\mathrm{P}$を通り$z$軸に平行な直線をとる.その直線上において$z$座標が正となる点$\mathrm{Q}$をとる.このとき,$\overrightarrow{\mathrm{AQ}} \perp \overrightarrow{\mathrm{BQ}}$となるような点$\mathrm{Q}$を求めよ.
(3)$(2)$で求めた点$\mathrm{Q}$に対して,四面体$\mathrm{OABQ}$の体積を求めよ.
東北医科薬科大学 私立 東北医科薬科大学 2014年 第3問
三角形$\mathrm{OAB}$において線分$\mathrm{OA}$を$2:5$に内分する点を$\mathrm{C}$,線分$\mathrm{OB}$を$1:3$に内分する点を$\mathrm{D}$とおく.このとき,次の問に答えなさい.

(1)$\displaystyle \overrightarrow{\mathrm{CD}}=\frac{[アイ]}{[ウ]} \overrightarrow{\mathrm{OA}}+\frac{[エ]}{[オ]} \overrightarrow{\mathrm{OB}}$である.
(2)線分$\mathrm{CD}$を$2:1$に内分する点を$\mathrm{E}$とおくと$\overrightarrow{\mathrm{OE}}=\frac{[カ]}{[キク]} \overrightarrow{\mathrm{OA}}+\frac{[ケ]}{[コ]} \overrightarrow{\mathrm{OB}}$である.
(3)三角形$\mathrm{OAB}$は$3$辺の長さの比が$\mathrm{OA}:\mathrm{OB}:\mathrm{AB}=5:4:7$で,外接円の半径が$\displaystyle \frac{35 \sqrt{6}}{12}$とする.このとき$\displaystyle \cos \angle \mathrm{AOB}=\frac{[サシ]}{[ス]}$であり,また三角形$\mathrm{OAB}$の面積は$[セソ] \sqrt{[タ]}$である.
(4)$\alpha,\ \beta$は実数で,点$\mathrm{P}$,$\mathrm{Q}$は$\overrightarrow{\mathrm{OP}}=\alpha \overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OQ}}=\beta \overrightarrow{\mathrm{OB}}$を満たす点とする.$3$点$\mathrm{P}$,$\mathrm{E}$,$\mathrm{Q}$が同一直線上にあり,$\overrightarrow{\mathrm{PD}}$と$\overrightarrow{\mathrm{CQ}}$が平行である.ただし点$\mathrm{P}$は点$\mathrm{C}$と異なるとするとき$\displaystyle \alpha=\frac{[チ]}{[ツ]}$,$\displaystyle \beta=\frac{[テ]}{[ト]}$である.
獨協大学 私立 獨協大学 2014年 第1問
次の設問の空欄を,あてはまる数値や記号,式などで埋めなさい.

(1)$2$次関数$y=x^2-6x+7$のグラフは$y=x^2+2x+2$のグラフを,$x$軸方向に$[$1$]$,$y$軸方向に$[$2$]$だけ平行移動したものである.
(2)次の式の分母を有理化せよ.
\[ (ⅰ) \frac{\sqrt{3}}{2-\sqrt{3}}=[$3$] \qquad (ⅱ) \frac{5 \sqrt{6}+\sqrt{2}}{\sqrt{6}+\sqrt{2}}=[$4$] \]
(3)$2$点$\mathrm{A}(-1,\ 2)$,$\mathrm{B}(5,\ 2)$を結ぶ線分$\mathrm{AB}$を$2:1$に内分する点$\mathrm{C}([$5$],\ [$6$])$を通り,線分$\mathrm{AB}$に垂直な直線の方程式は$[$7$]$と表される.
(4)数列$\{a_n\}$が$2,\ 3,\ 7,\ 14,\ 24,\ \cdots$のように与えられている.その階差数列を$\{b_n\}$とする.このとき,$b_1=[$8$]$,$b_2=[$9$]$であり,数列$\{b_n\}$の一般項は$b_n=[$10$]$と表される.よって,数列$\{a_n\}$の一般項は$a_n=[$11$]$となる.
(5)$x+y=20$,$x>0$,$y>0$であるとき,$\log_{\frac{1}{10}}x+\log_{\frac{1}{10}}y$の最小値は$[$12$]$である.
(6)各辺の長さが$\mathrm{AB}=1$,$\mathrm{BC}=2$,$\mathrm{CA}=k$である$\triangle \mathrm{ABC}$の面積は,$k=[$13$]$のとき最大値$[$14$]$をとる.
(7)$2$つのベクトル$\overrightarrow{x}=(a,\ b)$,$\overrightarrow{y}=(1,\ c)$について,$\overrightarrow{x} \perp \overrightarrow{y}$,$|\overrightarrow{x}-\overrightarrow{y}|=2$,$abc=-1$を満たす実数$a,\ b,\ c$の組合せは$[$15$]$通り存在する.また,このうち$a+b+c$の最小値は$[$16$]$となる.
(8)$2$人の男性$\mathrm{A}$,$\mathrm{B}$と$2$人の女性$\mathrm{a}$,$\mathrm{b}$がいる.この$4$人は無作為に異性を$1$人ずつ選ぶ.このとき,男性が選んだ女性がその男性を選べば,その男女をペアとする.たとえば,男性$\mathrm{A}$が女性$\mathrm{a}$を選び,女性$\mathrm{a}$も男性$\mathrm{A}$を選べば,その男女はペアとなる.このとき,ペアが全くできない確率は$[$17$]$,ペアがちょうど$1$組だけできる確率は$[$18$]$,ペアが$2$組できる確率は$[$19$]$である.
千葉工業大学 私立 千葉工業大学 2014年 第1問
次の各問に答えよ.

(1)$\displaystyle x<\frac{\sqrt{3}}{1-\sqrt{3}}$をみたす最大の整数$x$は$[アイ]$である.
(2)等式$\displaystyle \frac{x+5}{x^2+x-2}=\frac{a}{x-1}+\frac{b}{x+2}$が$x$についての恒等式であるとき,$a=[ウ]$,$b=[エオ]$である.
(3)点$(-4,\ a)$と直線$3x+4y-1=0$との距離が$1$であるとき,$a=[カ]$または$\displaystyle \frac{[キ]}{[ク]}$である.
(4)$\displaystyle \left( x-\frac{2}{3} \right)^9$の展開式において,$x^8$の係数は$[ケコ]$であり,$x^7$の係数は$[サシ]$である.
(5)$\overrightarrow{a}=(3,\ t+1,\ 1)$と$\displaystyle \overrightarrow{b}=\left( 2,\ -3,\ \frac{3}{2}t \right)$が垂直であるとき,$t=[ス]$である.
(6)$\displaystyle (5^{\frac{1}{3}}-5^{-\frac{1}{3}})(5^{\frac{2}{3}}+1+5^{-\frac{2}{3}})=\frac{[セソ]}{[タ]}$である.
(7)$\log_{10}2=p$とおくと,$\log_{10}5=[チ]-p$であり,$\displaystyle \log_4 500=\frac{[ツ]-p}{[テ]p}$である.
(8)$\displaystyle \int_{-1}^2 (-x^2+3 |x|) \, dx=\frac{[ト]}{[ナ]}$である.
神戸薬科大学 私立 神戸薬科大学 2014年 第2問
次の問いに答えよ.

(1)円$(x-a)^2+(y-b)^2=A$($a,\ b,\ A$は定数で$A>0$)と直線$y=x$が接するとき,$A$を$a$と$b$で表すと$A=[オ]$である.
(2)円$x^2+y^2=5$に接し,傾きが$-2$である直線の方程式は$[カ]$である.
スポンサーリンク

「直線」とは・・・

 まだこのタグの説明は執筆されていません。