タグ「直線」の検索結果

63ページ目:全2462問中621問~630問を表示)
東邦大学 私立 東邦大学 2015年 第1問
放物線$y=x^2+6x+5$と直線$y=2x+k$が異なる$2$点$\mathrm{A}$,$\mathrm{B}$で交わり,線分$\mathrm{AB}$の長さが$2 \sqrt{2}$であるとき,定数$k$の値は$\displaystyle \frac{[ア]}{[イ]}$である.
西南学院大学 私立 西南学院大学 2015年 第1問
点$\mathrm{A}(3,\ 4)$,$\mathrm{B}(8,\ 6)$と,$x$軸上を動く点$\mathrm{P}$がある.$\mathrm{AP}+\mathrm{BP}$が最小となるとき,以下の問に答えよ.

(1)点$\mathrm{A}$と点$\mathrm{P}$を通る直線$\ell$の方程式は,$y=[アイ]x+[ウエ]$である.
(2)点$\mathrm{P}$を頂点として,点$\mathrm{A}$を通る放物線$C$の方程式は,$y=[オ]x^2-[カキ]x+[クケ]$である.
(3)$\ell$と$C$で囲まれる図形の面積は,$\displaystyle \frac{[コ]}{[サ]}$である.
九州産業大学 私立 九州産業大学 2015年 第2問
円$x^2+y^2-6x+ay+4=0$上の点$\mathrm{A}(5,\ 1)$における接線を$\ell$とする.原点$\mathrm{O}$からこの円に引いた$2$本の接線のうち,傾きが正であるものの方程式を$y=mx$,接点を$\mathrm{B}$とする.また,この円の中心を$\mathrm{C}$とする.

(1)$a=[ア]$である.
(2)$\mathrm{C}$の座標は$([イ],\ [ウ])$である.
(3)接線$\ell$の傾きは$[エオ]$である.
(4)$\triangle \mathrm{OBC}$の面積は$\sqrt{[カ]}$である.
(5)$\displaystyle m=\frac{\sqrt{[キ]}}{[ク]}$である.
九州産業大学 私立 九州産業大学 2015年 第3問
$3$次関数$f(x)$は$x=-1$と$x=-5$で極値をとり,$f(0)=14$,$f(1)=64$とする.

(1)$f(x)=[ア]x^3+[イウ]x^2+[エオ]x+[カキ]$であり,
$f^\prime(x)=[ク]x^2+[ケコ]x+[サシ]$である.
(2)$f(x)$の極大値は$[スセ]$であり,極小値は$[ソ]$である.
(3)方程式$f(x)=0$の異なる実数解の個数は$[タ]$個である.
(4)$f^\prime(x)=g(x)$とおく.曲線$y=g(x)$と$x$軸とで囲まれる図形$A$の面積は$[チツ]$である.図形$A$が直線$x=a$によって$2$つに分割され,左側と右側の部分の面積の比が$5:27$であるならば,$a$の値は$[テト]$である.
昭和大学 私立 昭和大学 2015年 第4問
一辺の長さが$2$の正三角形$\mathrm{ABC}$の$3$辺$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CA}$の中点をそれぞれ$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$とする.$0<a<1$として,線分$\mathrm{AD}$を$(1-a):a$に内分する点を$\mathrm{O}$,線分$\mathrm{CE}$を$a:(1-a)$に内分する点を$\mathrm{P}$とし,直線$\mathrm{OP}$と直線$\mathrm{EF}$の交点を$\mathrm{Q}$とする.$\overrightarrow{\mathrm{AD}}=\overrightarrow{x}$,$\overrightarrow{\mathrm{AF}}=\overrightarrow{y}$とするとき,以下の各問いに答えよ.

(1)$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{x},\ \overrightarrow{y},\ a$で表せ.
(2)$\overrightarrow{\mathrm{OQ}}$を$\overrightarrow{\mathrm{OP}},\ a$で表せ.
(3)$\overrightarrow{\mathrm{OP}},\ \overrightarrow{\mathrm{OB}}$のなす角を$\theta$とするとき,$\cos^2 \theta$を$a$で表せ.
(4)$\theta={45}^\circ$のときの$a$の値を求めよ.
広島経済大学 私立 広島経済大学 2015年 第4問
$\mathrm{AB}=5 \sqrt{2}$,$\mathrm{BC}=6$,$\angle \mathrm{B}={45}^\circ$の三角形$\mathrm{ABC}$の辺$\mathrm{BC}$上に$\mathrm{AC}=\mathrm{AD}$を満たす$\mathrm{C}$と異なる点$\mathrm{D}$を定める.次の各問の空欄に当てはまる最も適切な数値を記入せよ.

(1)三角形$\mathrm{ABC}$の面積は$[$28$]$である.
(2)$\mathrm{AC}=\sqrt{[$29$]}$,$\mathrm{BD}=[$30$]$である.
(3)三角形$\mathrm{ADC}$の面積は$[$31$]$である.

(4)$\displaystyle \sin \angle \mathrm{CAD}=\frac{[$32$]}{[$33$]}$である.

(5)直線$\mathrm{AD}$が三角形$\mathrm{ABC}$の外接円と交わる点($\mathrm{A}$と異なる点)を$\mathrm{E}$とする.

このとき,$\displaystyle \mathrm{EC}=\frac{[$34$] \sqrt{[$35$]}}{[$36$]}$である.
広島経済大学 私立 広島経済大学 2015年 第2問
次の図はある地域の道を直線で示したものである.下の各問の空欄に当てはまる最も適切な数値を記入せよ.
(図は省略)

(1)$\mathrm{A}$から$\mathrm{B}$に行く最短の道順が$n$通りあるとき,$n-100=[$13$]$である.
(2)$\mathrm{A}$から$\mathrm{B}$に行く最短の道順の中で,$\mathrm{C}$を通る道順は$[$14$]$通りある.
(3)$\mathrm{A}$から$\mathrm{B}$に行く最短の道順の中で,$\mathrm{C}$と$\mathrm{D}$の両方を通る道順は$[$15$]$通りある.
(4)$\mathrm{A}$から$\mathrm{B}$に行く最短の道順の中で,$\mathrm{C}$または$\mathrm{D}$を通る道順は$[$16$]$通りある.
(5)$\mathrm{A}$から$\mathrm{B}$に行く最短の道順の中で,$\mathrm{E}$と$\mathrm{D}$の間の道(線分$\mathrm{ED}$)を通らない道順は$[$17$]$通りある.
昭和大学 私立 昭和大学 2015年 第3問
次の各問に答えよ.

(1)空間に$3$点$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{A}(1,\ 2,\ 3)$,$\mathrm{B}(2,\ -1,\ 4)$がある.次の問に答えよ.
$(1$-$1)$ $\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$の内積$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}$を求めよ.
$(1$-$2)$ $\cos \angle \mathrm{AOB}$の値を求めよ.
$(1$-$3)$ $\triangle \mathrm{OAB}$の面積を求めよ.
(2)$\displaystyle \left( 2x^3-\frac{1}{3x} \right)^9$の展開式における$\displaystyle \frac{1}{x}$の係数を求めよ.
(3)実数全体で定義された関数$\displaystyle f(x)=\frac{x^4+5x^2+11}{x^2+2}$の最小値を求めよ.
(4)曲線$y=\sqrt{2+|4x-2x^2|}$と直線$y=m(x+3)$が相異なる$4$個の交点をもつような定数$m$の値の範囲を求めよ.
広島経済大学 私立 広島経済大学 2015年 第3問
放物線$y=2x^2$を平行移動して得られる放物線について次の各問の空欄に当てはまる最も適切な数値を記入せよ.

(1)$x$軸方向に$-3$,$y$軸方向に$-5$平行移動した放物線の方程式は
$y=[$18$]x^2+[$19$]x+[$20$]$である.
(2)頂点が点$(2,\ 3)$である放物線の方程式は
$y=[$21$]x^2-[$22$]x+[$23$]$である.
(3)$x$軸との交点の$x$座標が$-2$と$4$である放物線の方程式は
$y=[$24$]x^2-[$25$]x-[$26$]$である.
(4)点$\displaystyle \left( 0,\ -\frac{1}{2} \right)$を通り,頂点が直線$y=2x$上にある放物線の方程式は
$\displaystyle y=[$27$]x^2+[$28$]x-\frac{[$29$]}{[$30$]}$である.
(5)放物線の軸は直線$x=3$であり,この放物線を表す関数の$1 \leqq x \leqq 4$における最大値は$5$であるとする.このとき,放物線の方程式は
$y=[$31$]x^2-[$32$]x+[$33$]$である.
東京都市大学 私立 東京都市大学 2015年 第4問
$a$を定数とし,$0 \leqq x \leqq 3$とする.関数$f(x)$を
\[ f(x)=x-6x^{\frac{1}{3}} \]
と定める.直線$y=-x+a$が曲線$y=f(x)$に接するとき,次の問に答えよ.

(1)$a$の値を求めよ.
(2)$f(x)$の増減を調べ,極値を求めよ.
(3)曲線$y=f(x)$の概形を描け.
(4)曲線$y=f(x)$,直線$y=-x+a$および$y$軸で囲まれる部分の面積$S$を求めよ.
スポンサーリンク

「直線」とは・・・

 まだこのタグの説明は執筆されていません。