タグ「直線」の検索結果

60ページ目:全2462問中591問~600問を表示)
北里大学 私立 北里大学 2015年 第6問
三角形$\mathrm{OAB}$において,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とする.また,線分$\mathrm{OB}$を$2:3$に内分する点を$\mathrm{C}$,線分$\mathrm{AC}$の中点を$\mathrm{P}$とする.さらに直線$\mathrm{OP}$と線分$\mathrm{AB}$の交点を$\mathrm{D}$とおく.

(1)$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{a}$と$\overrightarrow{b}$を用いて表すと,$\overrightarrow{\mathrm{OP}}=[タ] \overrightarrow{a}+[チ] \overrightarrow{b}$である.
(2)$\overrightarrow{\mathrm{OD}}$を$\overrightarrow{a}$と$\overrightarrow{b}$を用いて表すと,$\overrightarrow{\mathrm{OD}}=[ツ] \overrightarrow{a}+[テ] \overrightarrow{b}$である.
(3)三角形$\mathrm{OPC}$の面積を$M$,三角形$\mathrm{ADP}$の面積を$N$とおくとき,$\displaystyle \frac{M}{N}$の値は$[ト]$である.
学習院大学 私立 学習院大学 2015年 第4問
放物線$C:y=x^2$上の点$\mathrm{P}(t,\ t^2)$に対して,$\mathrm{P}$における$C$の接線を$L$とする.$t$が$0<t \leqq 1$の範囲を動くとき,$L$と直線$x=1$と$x$軸とで囲まれる三角形の面積の最大値と,最大値を与える$t$の値を求めよ.
龍谷大学 私立 龍谷大学 2015年 第1問
次の問いに答えなさい.

(1)ベクトル$\overrightarrow{a},\ \overrightarrow{b}$が,$\overrightarrow{a} \cdot \overrightarrow{a}=4$,$\overrightarrow{a} \cdot \overrightarrow{b}=-5$,$\overrightarrow{b} \cdot \overrightarrow{b}=9$を満たすとき,
\[ {|\abs{\overrightarrow{b|} \overrightarrow{a}+|\overrightarrow{a|} \overrightarrow{b}}}^2 \]
の値を求めなさい.
(2)直線$y=kx-k^2$が$k$の値によらず放物線$y=ax^2$に接するとき,$a$の値を求めなさい.
(3)曲線$y=(1-\sqrt{x})^2$と$x$軸および$y$軸で囲まれた図形の面積を求めなさい.
愛知工業大学 私立 愛知工業大学 2015年 第1問
次の$[ ]$を適当に補え.

(1)$x^2-2x-7<0$をみたす実数$x$の範囲は$[ア]$である.また,実数$x$に対して,$x$を超えない最大の整数を$[x]$とすると,${[x]}^2-2[x]-7<0$をみたす実数$x$の範囲は$[イ]$である.
(2)数列$\{a_n\}$は関係式
\[ a_1=1,\quad a_2=\frac{4}{3},\quad 3a_{n+2}-4a_{n+1}+a_n=0 \quad (n=1,\ 2,\ 3,\ \cdots) \]
をみたすとする.このとき,数列$\{a_{n+1}-pa_n\}$が公比$q$の等比数列になるような定数$p,\ q$の組は$(p,\ q)=[ウ]$であり,一般項$a_n$は$a_n=[エ]$である.
(3)$\displaystyle \frac{\cos \theta-\sin \theta}{\cos \theta+\sin \theta}=\sqrt{3}-2$となるのは$\tan \theta=[オ]$のときであり,これをみたす$\displaystyle \theta \left( 0<\theta<\frac{\pi}{2} \right)$の値は$\theta=[カ]$である.
(4)$a$を実数とし,$\displaystyle f(a)=\int_{-1}^2 {(x-a |x|)}^2 \, dx$とする.$f(a)$は$a=[キ]$のとき,最小値$[ク]$をとる.
(5)$\tan x=t$とおくとき,$\sin 2x$を$t$で表すと$\sin 2x=[ケ]$である.また,$\displaystyle \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{1}{\sin 2x} \, dx=[コ]$である.

\mon[(注)] 次の$(6),\ (7)$は選択問題である.

(6)大小$2$つのさいころを投げて,大きいさいころの出た目を$a$,小さいさいころの出た目を$b$とする.$2$次方程式$x^2+ax+b=0$が$2$つの異なる実数解をもつ確率は$[サ]$,重解をもつ確率は$[シ]$,実数解をもたない確率は$[ス]$である.
(7)平面上で,半径$3$の円$C_1$と半径$5$の円$C_2$が点$\mathrm{P}$で外接している.$1$本の直線が$\mathrm{P}$と異なる点$\mathrm{Q}$,$\mathrm{R}$で円$C_1,\ C_2$とそれぞれ接しているとき,$\mathrm{QR}=[セ]$である.また,直線$\mathrm{QP}$と円$C_2$との,$\mathrm{P}$と異なる交点を$\mathrm{S}$とするとき,$\mathrm{SR}=[ソ]$である.
駒澤大学 私立 駒澤大学 2015年 第1問
次の$[ ]$を埋めよ.

(1)円$x^2+y^2=5$と直線$y=x+k$が共有点をもつとき,定数$k$の範囲は,
\[ -\sqrt{[ア][イ]} \leqq k \leqq \sqrt{[ア][イ]} \]
である.
(2)関数$f(x)=x^3-3x^2-72x+18$の導関数は
\[ f^\prime(x)=[ウ]x^{\mkakko{エ}}-[オ]x-[カ][キ] \]
となる.また,関数$f(x)$は$x=[ク][ケ]$のとき極大値$[コ][サ][シ]$をとり,$x=[ス]$のとき極小値$\kakkofour{セ}{ソ}{タ}{チ}$をとる.
(3)平面上に$3$点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(-1,\ 2)$,$\mathrm{B}(1,\ 3)$がある.このとき,


$|\overrightarrow{\mathrm{OA}}|=\sqrt{[ツ]}$,$|\overrightarrow{\mathrm{OB}}|=\sqrt{[テ][ト]}$,

$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}=[ナ]$,$\angle \mathrm{AOB}={[ニ][ヌ]}^\circ$


となる.また,$\triangle \mathrm{OAB}$の面積は$\displaystyle \frac{[ネ]}{[ノ]}$である.
東京理科大学 私立 東京理科大学 2015年 第3問
楕円$\displaystyle C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1 (a>b>0)$は次の条件を満たすとする.
\begin{itemize}
楕円$C$は点$\mathrm{A}(0,\ -1)$を通る
楕円$C$の右焦点と直線$x-y+2 \sqrt{2}=0$の距離は$3$である(ただし,楕円の右焦点とは,楕円の$2$つの焦点のうち,$x$座標が正のものをさす.)
\end{itemize}

(1)$a,\ b$の値を求めなさい.
(2)$y$軸上に点$\mathrm{P}(0,\ p)$をとる.点$\mathrm{P}$を通り,次の条件を満たす直線$\ell$が$p$の値によって何本引けるかを調べなさい.
\begin{itemize}
直線$\ell$は楕円$C$と異なる$2$点$\mathrm{M}$,$\mathrm{N}$で交わり,$\mathrm{AM}=\mathrm{AN}$が成り立つ.
\end{itemize}
同志社大学 私立 同志社大学 2015年 第1問
次の$[ ]$に適する数または式を記入せよ.

(1)関数$f(x)=3^x$の導関数は$f^\prime(x)=[ア]$であり,$\displaystyle \int_0^2 f(x) \, dx=[イ]$である.したがって,座標平面内において,点$(1,\ 3)$における曲線$C:y=f(x)$の接線$\ell$の方程式は$y=[ウ]$であり,法線$m$の方程式は$y=[エ]$である.さらに,曲線$C$,接線$\ell$,$y$軸と直線$x=2$で囲まれた部分の面積は$[オ]$であり,法線$m$と$x$軸の交点の座標は$([カ],\ 0)$である.
(2)$1$から$9$までの番号札$9$枚を入れた箱がある.その箱から番号札を$1$枚ずつ$2$回取り出して,その数を順に$x,\ y$とする.ただし,$1$度取り出した札はもとに戻さないとする.$\displaystyle \frac{y}{x}$が整数になる確率は$[キ]$であり,$\displaystyle \frac{y}{x} \leqq \frac{1}{2}$となる確率は$[ク]$であり,$\displaystyle \frac{y}{x} \geqq 3$となる確率は$[ケ]$である.また,$\displaystyle \frac{1}{2}<\frac{y}{x}<3$となる確率は$[コ]$である.
同志社大学 私立 同志社大学 2015年 第1問
次の$[ ]$に適する数または式を記入せよ.

(1)整式$P(x)$は$(x-2)(x+3)$で割ると余りは$5x-2$であり,$(x-2)(x-3)$で割ると余りは$-x+10$である.このとき,$P(x)$を$(x+3)(x-3)$で割ると余りは$([ア])x+([イ])$である.
(2)初項が$a_1=-24$で公差が$12$の等差数列$\{a_n\}$の初項から第$n$項までの和$S_n$は$S_n=[ウ]$である.また,数列$\{b_n\}$の初項$b_1$から第$n$項までの和$T_n$が$T_n=5^n-1$のとき,一般項は$b_n=[エ]$である.このとき,初項が$c_1=-1$で漸化式
\[ c_{n+1}=c_n+S_n-b_n \quad (n=1,\ 2,\ 3,\ \cdots) \]
により定まる数列$\{c_n\}$の一般項は$c_n=[オ]$である.
(3)曲線$C:y=|x^2-4x-5|$と直線$\ell:y=k$の共有点の個数は$3$個である.このとき,実数$k$の値は$k=[カ]$であり,直線$\ell$と曲線$C$で囲まれた図形の面積は$[キ]$である.
(4)$1$個のサイコロを$3$回投げる.出た目の最大値が$5$となる確率は$[ク]$である.出た目の最大値が$5$,かつ最小値が$1$となる確率は$[ケ]$である.$3$つの出た目の積が$2$の倍数であり,かつ$3$の倍数でない確率は$[コ]$である.
獨協医科大学 私立 獨協医科大学 2015年 第1問
次の問いに答えなさい.

(1)定数$a$を正の実数とする.関数
\[ f(\theta)=4 \sin 2\theta+6 \cos^2 \theta+4a(\sin \theta+2 \cos \theta)+a^2+1 \]
の$0 \leqq \theta \leqq \pi$における最大値を$M$,最小値を$m$とする.
$t=\sin \theta+2 \cos \theta$とおく.$f(\theta)$を$t$を用いて表すと
\[ f(\theta)=[ア]t^2+4at+a^2-[イ] \]
である.
$M=a^2+[ウ] \sqrt{[エ]}a+[オ]$であり,これを与える$\theta$の値を$\theta_0$とすると,$\displaystyle \tan \theta_0=\frac{[カ]}{[キ]}$である.
また,$M-m=14$となる$a$の値は,$a=\sqrt{[ク]}-\sqrt{[ケ]}$である.
(2)定数$m$を正の整数とする.
$xy$平面上に$2$点$\mathrm{A}(21,\ 0)$,$\mathrm{B}(0,\ m)$がある.点$(1,\ 0)$と直線$\mathrm{AB}$との距離を$d$とすると
\[ d=\frac{[コサ]m}{\sqrt{m^2+[シスセ]}} \]
である.
$d$が有理数となるような$m$の値は全部で$[ソ]$個あり,そのうち$m$の値が最大のものは$m=[タチツ]$である.
また,$d$が整数となるとき,$m=[テト]$,$d=[ナニ]$である.
獨協医科大学 私立 獨協医科大学 2015年 第3問
$a,\ b$を実数の定数とする.$\mathrm{O}$を原点とする座標空間内に$3$点$\mathrm{A}(1,\ 2,\ 0)$,$\mathrm{B}(2,\ 0,\ 4)$,$\mathrm{C}(a,\ b,\ 1)$がある.

三角形$\mathrm{OAB}$において,点$\mathrm{O}$から直線$\mathrm{AB}$に下ろした垂線と直線$\mathrm{AB}$の交点を$\mathrm{H}$とする.点$\mathrm{H}$の座標は
\[ \left( \frac{[ア]}{[イ]},\ \frac{[ウエ]}{[オ]},\ \frac{[カ]}{[キ]} \right) \]
である.
点$\mathrm{A}$から直線$\mathrm{OB}$に下ろした垂線と線分$\mathrm{OH}$の交点を$\mathrm{K}$とする.点$\mathrm{K}$の座標は
\[ \left( \frac{[ク]}{[ケ]},\ \frac{[コ]}{[サ]},\ \frac{[シ]}{[ス]} \right) \]
である.
$\overrightarrow{\mathrm{OA}}$は$\overrightarrow{\mathrm{BC}}$に垂直で,$\overrightarrow{\mathrm{OB}}$は$\overrightarrow{\mathrm{AC}}$に垂直であるとする.このとき$a=[セソ]$,$\displaystyle b=\frac{[タ]}{[チ]}$である.以下で,$a,\ b$はこの値であるとする.
線分$\mathrm{CK}$上に$\overrightarrow{\mathrm{OL}}$が$\overrightarrow{\mathrm{AC}}$に垂直になるように点$\mathrm{L}$をとるとき
\[ \overrightarrow{\mathrm{OL}}=\left( [ツ],\ [テ],\ \frac{[ト]}{[ナ]} \right) \]
である.そのとき,$\overrightarrow{\mathrm{LK}}$は$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$に垂直である.
平面$\mathrm{OAB}$において,三角形$\mathrm{KAB}$の外接円の周上に点$\mathrm{P}$をとるとき,線分$\mathrm{LP}$の長さの最大値は$\displaystyle \frac{\sqrt{[ニヌ]}}{[ネ]}$である.
スポンサーリンク

「直線」とは・・・

 まだこのタグの説明は執筆されていません。