タグ「直線」の検索結果

41ページ目:全2462問中401問~410問を表示)
東京海洋大学 国立 東京海洋大学 2015年 第4問
座標平面上の曲線$y=x^2(1-x)$を$C$とし,直線$y=-x$を$\ell$とする.数列$\{a_n\} (n=1,\ 2,\ 3,\ \cdots)$を次のように定める.$\displaystyle a_1=\frac{2}{5}$とし,$x=a_n (n=1,\ 2,\ 3,\ \cdots)$における$C$の接線と$\ell$の交点の$x$座標を$a_{n+1}$とする.このとき次の問に答えよ.

(1)$n$を自然数とするとき,$a_{n+1}$を$a_n$で表せ.
(2)$n$を自然数とするとき,$0<a_{n+1}<{a_n}^2$を示せ.
富山大学 国立 富山大学 2015年 第1問
$m$を実数とする.方程式
\[ mx^2-my^2+(1-m^2)xy+5(1+m^2)y-25m=0 \cdots\cdots (*) \]
を考える.このとき,次の問いに答えよ.

(1)$xy$平面において,方程式$(*)$が表す図形は$2$直線であることを示せ.
(2)$(1)$で求めた$2$直線は$m$の値にかかわらず,それぞれ定点を通る.これらの定点を求めよ.
(3)$m$が$-1 \leqq m \leqq 3$の範囲を動くとき,$(1)$で求めた$2$直線の交点の軌跡を図示せよ.
富山大学 国立 富山大学 2015年 第3問
次の問いに答えよ.

(1)関数$f(x)$は区間$[a,\ b]$で連続であり,区間$(a,\ b)$で第$2$次導関数$f^{\prime\prime}(x)$をもつとする.さらに,区間$(a,\ b)$で$f^{\prime\prime}(x)<0$が成り立つとする.$y=g(x)$を$2$点$(a,\ f(a))$,$(b,\ f(b))$を通る直線の方程式とするとき,区間$(a,\ b)$で常に$f(x)>g(x)$であることを示せ.
(2)$n$を$2$以上の自然数とするとき,$j=1,\ 2,\ \cdots,\ n-1$について
\[ \frac{\log j+\log (j+1)}{2}<\int_j^{j+1} \log x \, dx \]
が成り立つことを示せ.
(3)$n$を$2$以上の自然数とするとき,次の不等式が成り立つことを示せ.
\[ \sqrt{n!(n-1)!}<n^n e^{-n+1} \]
富山大学 国立 富山大学 2015年 第1問
次の問いに答えよ.

(1)関数$f(x)$は区間$[a,\ b]$で連続であり,区間$(a,\ b)$で第$2$次導関数$f^{\prime\prime}(x)$をもつとする.さらに,区間$(a,\ b)$で$f^{\prime\prime}(x)<0$が成り立つとする.$y=g(x)$を$2$点$(a,\ f(a))$,$(b,\ f(b))$を通る直線の方程式とするとき,区間$(a,\ b)$で常に$f(x)>g(x)$であることを示せ.
(2)$n$を$2$以上の自然数とするとき,$j=1,\ 2,\ \cdots,\ n-1$について
\[ \frac{\log j+\log (j+1)}{2}<\int_j^{j+1} \log x \, dx \]
が成り立つことを示せ.
(3)$n$を$2$以上の自然数とするとき,次の不等式が成り立つことを示せ.
\[ \sqrt{n!(n-1)!}<n^n e^{-n+1} \]
富山大学 国立 富山大学 2015年 第3問
「表が出る確率が$p (0<p<1)$,裏が出る確率が$1-p$のコインを投げ,数直線上の点$\mathrm{A}$を次の規則(ア),(イ)にしたがって動かす」という操作を繰り返し行う.ただし,点$\mathrm{A}$は最初は原点にあるものとする.

\mon[(ア)] 点$\mathrm{A}$が$-1,\ 0,\ 1,\ 2$のいずれかにあるときには,コインを投げて表が出れば点$\mathrm{A}$を$+2$だけ移動させ,裏が出れば点$\mathrm{A}$を$-1$だけ移動させる.
\mon[(イ)] 点$\mathrm{A}$が$-1,\ 0,\ 1,\ 2$以外にあるときには,コインを投げて表が出ても裏が出ても点$\mathrm{A}$を移動させない.

このような操作を$n$回行った後の点$\mathrm{A}$の座標を$x_n$とするとき,次の問いに答えよ.

(1)上の操作を$3$回繰り返した後,$x_1 \neq 0$かつ$x_2 \neq 0$かつ$x_3 \neq 0$となる確率を求めよ.
(2)$k$を自然数とする.$x_{3k}=0$となる確率,$x_{3k+1}=0$となる確率,$x_{3k+2}=0$となる確率をそれぞれ求めよ.
(3)$k$を自然数とする.$x_{3k-2} \neq x_{3k-1}$かつ$x_{3k-1}=x_{3k}$となる確率を求めよ.
富山大学 国立 富山大学 2015年 第1問
$f(x)=\log x (x>0)$とし,曲線$C_1:y=f(x)$上の点$(t,\ f(t))$における接線を$\ell$とする.直線$\ell$と曲線$C_2:y={(x-\sqrt{2})}^2$で囲まれた図形の面積を$S$とする.このとき,次の問いに答えよ.

(1)$S$を$t$を用いて表せ.
(2)$S$を最小にする$t$の値を求めよ.ただし,そのときの$S$の値は求めなくてよい.
富山大学 国立 富山大学 2015年 第3問
$f(x)=\log x (x>0)$とし,曲線$C_1:y=f(x)$上の点$(t,\ f(t))$における接線を$\ell$とする.直線$\ell$と曲線$C_2:y={(x-\sqrt{2})}^2$で囲まれた図形の面積を$S$とする.このとき,次の問いに答えよ.

(1)$S$を$t$を用いて表せ.
(2)$S$を最小にする$t$の値を求めよ.ただし,そのときの$S$の値は求めなくてよい.
群馬大学 国立 群馬大学 2015年 第4問
$a$を定数とし,曲線$y=x^3+ax^2+3x$を$C$とおく.$C$上の点$\mathrm{O}(0,\ 0)$における$C$の接線を$\ell$とし,$\mathrm{O}$を通り$\ell$に垂直な直線を$m$とする.

(1)$\ell,\ m$の方程式を,それぞれ求めよ.
(2)$m$が$C$に接するとき,定数$a$の値を求めよ.
群馬大学 国立 群馬大学 2015年 第5問
点$\mathrm{P}(0,\ 4)$を通る傾き$\displaystyle \frac{1}{5}$の直線を$\ell$とし,曲線$y=|x(x-4)|$を$C$とする.

(1)$\ell$と$C$の第$1$象限における交点$\mathrm{Q}$を求めよ.
(2)$C$と線分$\mathrm{PQ}$および$y$軸で囲まれた部分の面積を求めよ.
群馬大学 国立 群馬大学 2015年 第4問
座標平面上の楕円$\displaystyle x^2+\frac{y^2}{9}=1$を$C$とし,点$\mathrm{P}(\alpha,\ \beta)$を$\alpha>0$,$\beta>0$を満たす$C$上の点とする.点$\mathrm{P}$における$C$の接線$\ell$と$x$軸,$y$軸との交点をそれぞれ$\mathrm{Q}$,$\mathrm{R}$とおく.

(1)$\ell$の方程式を$\alpha,\ \beta$を用いて表せ.
(2)線分$\mathrm{QR}$の長さの$2$乗を$\alpha$を用いて表せ.
(3)線分$\mathrm{QR}$の長さの最小値を求めよ.
スポンサーリンク

「直線」とは・・・

 まだこのタグの説明は執筆されていません。