タグ「直線」の検索結果

22ページ目:全2462問中211問~220問を表示)
自治医科大学 私立 自治医科大学 2016年 第12問
円$C:(x-3)^2+(y+2)^2=2$と直線$\ell:y=2x-7$について考える.円$C$と直線$\ell$は,異なる$2$つの点$\mathrm{A}$,$\mathrm{B}$で交わる.線分$\mathrm{AB}$の長さを$m$とするとき,$\sqrt{5}m$の値を求めよ.
自治医科大学 私立 自治医科大学 2016年 第15問
$\triangle \mathrm{ABC}$において,辺$\mathrm{BC}$を$1:2$に内分する点を$\mathrm{P}$,辺$\mathrm{CA}$を$2:3$に内分する点を$\mathrm{Q}$とする.線分$\mathrm{AP}$と線分$\mathrm{BQ}$の交点を$\mathrm{S}$とし,直線$\mathrm{CS}$と辺$\mathrm{AB}$の交点を$\mathrm{R}$とする.線分$\mathrm{AR}$の長さが線分$\mathrm{AB}$の長さの$m$倍となるとき,$4m$の値を求めよ.
北里大学 私立 北里大学 2016年 第2問
次の文中の$[ア]$~$[ヌ]$にあてはまる最も適切な数値を答えなさい.

$xy$平面上のいくつかの曲線および直線について考える.

(1)曲線$C_1:y=x(x-2)$と$x$軸によって囲まれた領域の面積を$S$とすれば$\displaystyle S=\frac{[ア]}{[イ]}$である.
原点を通る直線$\ell:y=kx$と$C_1$は,これらが接する場合を除き$x=0$および$x=[ウ]+[エ]k$で交わる.
また,$\ell$が$S$を等分するとき,$\displaystyle k=[オ]+\left( [カ] \right)^{1/ \mkakko{キ}}$である.
(2)曲線$C_2:y=x |x-2|$と,直線$\ell:y=kx$が原点で接するとき,$k=[ク]$であり,$C_2$と$\ell$は$x=[ケ]$で再び交わる.このとき,$C_2$と$\ell$によって囲まれた領域の面積は$[コ]$である.
(3)曲線$C_3:y=x(x-2)^2$と$x$軸によって囲まれた領域の面積は$\displaystyle \frac{[サ]}{[シ]}$である.
$C_3$と直線$\ell:y=kx$が原点で接するとき,$k=[ス]$であり,$C_3$と$\ell$は$x=[セ]$で再び交わる.このとき,$C_3$と$\ell$によって囲まれた領域の面積は$\displaystyle \frac{[ソ][タ]}{[チ]}$である.
$C_3$は$\displaystyle x=\frac{[ツ]}{[テ]}$で極大値をとるから,曲線$C_3$と,直線$L:y=a$が異なる$3$つの共有点をもつような$a$の範囲は,$\displaystyle 0<a<\frac{[ト][ナ]}{[ニ][ヌ]}$である.
京都産業大学 私立 京都産業大学 2016年 第3問
$xy$平面上の$2$つの曲線

$C_1:y=e^x-2$
$C_2:y=\log x$

について以下の問いに答えよ.ただし,$\log$は自然対数であり,$e$は自然対数の底とする.

(1)$s$を実数,$t$を正の数とする.$C_1$上の点$(s,\ e^s-2)$における$C_1$の接線の方程式,および$C_2$上の点$(t,\ \log t)$における$C_2$の接線の方程式を求めよ.
(2)$C_1$と$C_2$の両方に接する直線は$2$本存在する.それぞれの直線の方程式を求めよ.
(3)$(2)$の$2$直線それぞれの$C_2$との接点の座標を求めよ.
(4)$(2)$の$2$直線の交点の$x$座標を求めよ.
(5)$C_2$と$(2)$の$2$直線で囲まれた部分の面積を求めよ.
明治大学 私立 明治大学 2016年 第3問
座標平面上で,曲線$y=ax^2+bx+2$を$C$とおく.また,直線$y=ax+b+2$を$\ell$とおく.ただし,$a,\ b$は定数とし,$a>0$とする.以下の問に答えなさい.

(1)曲線$C$と直線$\ell$がただ$1$つの共有点を持つための必要十分条件となる$a,\ b$の式を求めなさい.また,その共有点の座標を求めなさい.
(2)いま,曲線$C$と直線$\ell$が$2$つの交点を持ち,$2$交点の$x$座標の差の絶対値は$4$であるとする.また,曲線$C$と直線$\ell$で囲まれる部分の面積は$64$であるとする.このとき,これを満たす$a,\ b$の値を求めなさい.
明治大学 私立 明治大学 2016年 第4問
次の設問の$[ ]$に適当な数を入れなさい.

点$(4,\ 2,\ 7)$を通りベクトル$\overrightarrow{a}=(2,\ 1,\ 4)$に平行な直線を$\ell$,点$(2,\ 12,\ -5)$を通りベクトル$\overrightarrow{b}=(1,\ 3,\ -3)$に平行な直線を$m$とし,直線$\ell$上の点を$\mathrm{P}$,直線$m$上の点を$\mathrm{Q}$とする.線分$\mathrm{PQ}$が直線$\ell$および直線$m$と垂直であるとき,点$\mathrm{P}$の$x$座標は$[ ]$であり,線分$\mathrm{PQ}$の長さは$[ ]$である.
大阪薬科大学 私立 大阪薬科大学 2016年 第2問
次の問いに答えなさい.

$2$つの関数$f(x)=x^2+3$と$g(x)=4x^2-8 |x|$を考える.$xy$座標平面において,$y=f(x)$のグラフを$C_1$とし,$y=g(x)$のグラフを$C_2$とする.また,$C_1$上の点$(2,\ f(2))$における接線を$\ell$とする.

(1)$\ell$の$y$切片を求めよ.
(2)$\ell$と$C_2$の共有点の個数を求めよ.
(3)$C_1$と$C_2$の共有点のうち,第$1$象限にある点の座標を求めよ.
(4)$C_1$と$C_2$で囲まれた図形の面積を求めよ.
(5)$xy$座標平面上の関数$y=4x^2-8 |x|+ax+1$のグラフと$x$軸との共有点が$4$個になるように,定数$a$の値の範囲を定めよ.
北里大学 私立 北里大学 2016年 第3問
双曲線$\displaystyle \frac{x^2}{2}-y^2=1$に対し,双曲線上の点$\mathrm{P}(a,\ b)$における接線を$\ell$とする.ただし,$a>0$とする.

(1)$\ell$の方程式が$\displaystyle \frac{ax}{2}-by=1$で与えられることを示せ.
(2)$\ell$に垂直な双曲線の接線$m$が引けるための$a$の条件を求めよ.
(3)$a$が$(2)$の条件を満たすとする.双曲線上の点$\mathrm{Q}(c,\ d)$における接線が$\ell$に垂直に交わるように点$\mathrm{Q}$を定める.ただし,$d>0$とする.$\mathrm{O}$を原点とするとき,$\triangle \mathrm{OPQ}$の面積を最小にする$a$の値を求めよ.
同志社大学 私立 同志社大学 2016年 第1問
次の$[ ]$に適する数または式を記入せよ.

(1)初項が$a_1$で公差が$d$である等差数列$\{a_n\}$について,$a_{27}=20$,$a_{37}=15$が成り立っている.このとき,$a_1=[ア]$であり,$d=[イ]$である.したがって$a_1+a_2+a_3+\cdots +a_n=[ウ]$となる.
(2)$2$曲線$y=4^x (x \geqq 0)$と$y=8^x (x \geqq 0)$と直線$x=1$に囲まれた部分を$D$とする.$D$の面積は$[エ]$であり,$D$を$x$軸のまわりに$1$回転してできる回転体の体積は$[オ]$であり,$D$を$y$軸のまわりに$1$回転してできる回転体の体積は$[カ]$である.
(3)双曲線
\[ C:\frac{x^2}{9}-\frac{y^2}{4}=1 \]
上の点$\displaystyle \mathrm{P} \left( \frac{3}{\cos \theta},\ 2 \tan \theta \right) (0<\theta<\frac{\pi}{2})$における接線$\ell$の方程式は$[キ]$であり,法線$m$の方程式は$[ク]$である.また,$m$と$x$軸の交点を$(X,\ 0)$とし$m$と$y$軸の交点を$(0,\ Y)$とすると,$X$の範囲は$[ケ]$であり,$Y$の範囲は$[コ]$である.
同志社大学 私立 同志社大学 2016年 第1問
次の$[ ]$に適する数または式を記入せよ.

(1)$a$を実数とする.$3$辺の長さがそれぞれ$a-1,\ a,\ a+1$となる三角形が存在するとき,$a$の値の範囲は$[ア]$である.この三角形が鈍角三角形となる$a$の値の範囲は$[イ]$である.$a=[ウ]$のとき,$1$つの内角が$\displaystyle \frac{2\pi}{3}$となる三角形である.このとき三角形の外接円の半径は$[エ]$であり,内接円の半径は$[オ]$である.
(2)$k$を実数とし,$f(x)=x^4+kx^2+1$とおく.曲線$C_1:y=f(x)$の点$\mathrm{P}(1,\ f(1))$における接線$\ell$の方程式は$y=[カ]$である.直線$\ell$は,$k$の値によらず定点$([キ])$を通る.$k$の値の範囲が$[ク]$のとき,曲線$C_1$と直線$\ell$との共有点の個数は$3$となる.このとき,この$3$つの共有点を通る$3$次関数で定義される曲線のうち,$x^3$の係数が$1$である曲線$C_2$は$y=[ケ]$で表される.$k=-7$のとき,$\ell$と$C_2$で囲まれた$2$つの部分の面積の差の絶対値は$[コ]$である.
スポンサーリンク

「直線」とは・・・

 まだこのタグの説明は執筆されていません。