タグ「直線」の検索結果

21ページ目:全2462問中201問~210問を表示)
京都薬科大学 私立 京都薬科大学 2016年 第3問
次の$[ ]$にあてはまる式を記入せよ.

空間の異なる$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$に対して,$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{OB}}$とおく.線分$\mathrm{AB}$を$k:l$に内分する点を$\mathrm{C}$とおくと
\[ \overrightarrow{\mathrm{OC}}=[ア] \overrightarrow{a}+[イ] \overrightarrow{b} \]
と表される.また,線分$\mathrm{AB}$を$m:n (m>n)$に外分する点を$\mathrm{D}$とおくと
\[ \overrightarrow{\mathrm{OD}}=[ウ] \overrightarrow{a}+[エ] \overrightarrow{b} \]
と表される.さらに,$pm-qn \neq 0$をみたす正の数$p,\ q$について,$\overrightarrow{\mathrm{OA}^\prime}=p \overrightarrow{a}$,$\overrightarrow{\mathrm{OB}^\prime}=q \overrightarrow{b}$をみたす$2$点$\mathrm{A}^\prime$,$\mathrm{B}^\prime$をとり,直線$\mathrm{OC}$,$\mathrm{OD}$がそれぞれ直線$\mathrm{A}^\prime \mathrm{B}^\prime$と交わる点を$\mathrm{C}^\prime$,$\mathrm{D}^\prime$とおくと$\overrightarrow{\mathrm{OC}^\prime}$,$\overrightarrow{\mathrm{OD}^\prime}$はそれぞれ
\[ \overrightarrow{\mathrm{OC}^\prime}=[オ] \overrightarrow{a}+[カ] \overrightarrow{b},\quad \overrightarrow{\mathrm{OD}^\prime}=[キ] \overrightarrow{a}+[ク] \overrightarrow{b} \]
と表される.よって,$\mathrm{C}^\prime$は線分$\mathrm{A}^\prime \mathrm{B}^\prime$を$[ケ]:[コ]$に内分する点で,$\mathrm{D}^\prime$は線分$\mathrm{A}^\prime \mathrm{B}^\prime$を$[サ]:[シ]$に外分する点である.
ここで,点$\mathrm{C}$が線分$\mathrm{AB}$を内分する比の値$\displaystyle \frac{k}{l}$と,点$\mathrm{D}$が線分$\mathrm{AB}$を外分する比の値$\displaystyle \frac{m}{n}$について,これら$2$つの比の商を
\[ c(\mathrm{A},\ \mathrm{B},\ \mathrm{C},\ \mathrm{D})=\frac{\displaystyle\frac{k}{l}}{\displaystyle\frac{m}{n}}=\frac{kn}{lm} \]
とおくとき,点$\mathrm{C}^\prime$が線分$\mathrm{A}^\prime \mathrm{B}^\prime$を内分する比の値と点$\mathrm{D}^\prime$が線分$\mathrm{A}^\prime \mathrm{B}^\prime$を外分する比の商$c(\mathrm{A}^\prime,\ \mathrm{B}^\prime,\ \mathrm{C}^\prime,\ \mathrm{D}^\prime)$は,$k,\ l,\ m,\ n$を用いると$[ス]$と表せる.
京都薬科大学 私立 京都薬科大学 2016年 第4問
次の$[ ]$にあてはまる数または式を記入せよ.

(1)$1$から$6$までの数字が$1$つずつ書かれた赤球が$6$個入った袋$\mathrm{A}$と,$1$から$6$までの数字が$1$つずつ書かれた白球が$6$個入った袋$\mathrm{B}$がある.それぞれの袋から無作為に$1$個ずつ球を取り出し,それらの球に書かれた数の合計が$k$となる場合の数を$f(k)$で表す.このとき,$xy$平面上の点$(k,\ f(k))$は,直線$x=[ア]$に関して対称な$2$直線上に並び,これらの対称な$2$直線と$x$軸で囲まれた部分の面積は$[イ]$である.
(2)$N$を$2$以上の整数とする.$1$から$N$までの数字が$1$つずつ書かれた赤球が$N$個入った袋$\mathrm{A}$と,$1$から$N$までの数字が$1$つずつ書かれた白球が$N$個入った袋$\mathrm{B}$がある.それぞれの袋から無作為に$1$個ずつ球を取り出し,それらの球に書かれた数の合計が$l$となる場合の数を$g(l)$で表す.このとき,$xy$平面上の点$(l,\ g(l))$は,直線$x=[ウ]$に関して対称な$2$直線上に並び,これらの対称な$2$直線と$x$軸で囲まれた部分の面積は$[エ]$である.
(3)$N$を$2$以上の整数とする.$1$から$N$までの数字が$1$つずつ書かれた赤球が$N$個と,$1$から$N$までの数字が$1$つずつ書かれた白球が$N$個入った袋$\mathrm{A}$と,$1$から$2N$までの数字が$1$つずつ書かれた青球が$2N$個入った袋$\mathrm{B}$がある.それぞれの袋から無作為に$1$個ずつ球を取り出し,それらの球に書かれた数の合計が$m$となる場合の数を$h(m)$で表す.このとき,$xy$平面上の点$(m,\ h(m))$が並ぶ直線の方程式は以下のようになる.


\qquad \; \!\!$2 \leqq m \leqq [オ]$の$(m,\ h(m))$について,$y=[カ]$
$[オ] \leqq m \leqq [キ]$の$(m,\ h(m))$について,$y=[ク]$
$[キ] \leqq m \leqq [ケ]$の$(m,\ h(m))$について,$y=[コ]$


これらの$3$直線と$x$軸で囲まれた部分の面積は$[サ]$である.
倉敷芸術科学大学 私立 倉敷芸術科学大学 2016年 第5問
放物線$y=x^2-2x+a$と直線$y=bx+5$の交点の$1$つが$(3,\ 2)$のとき,次の設問に答えよ.

(1)定数$a,\ b$の値を求めよ.
(2)もう$1$つの交点の座標を求めよ.
(3)放物線と直線で囲まれた図形の面積を求めよ.
慶應義塾大学 私立 慶應義塾大学 2016年 第3問
$xy$平面上を動く中心$(0,\ p)$,半径$r (0<r<p)$の円$C_1$が,放物線$C_2:y=x^2$と異なる$2$点で,直線$\ell:y=q (q>p)$と$1$点で接している(直線$\ell$は円$C_1$と連動して動くものとする).ここで$2$つの曲線が接するとは,交点における接線が一致することを意味する.このとき
\[ p=[$36$]r^2+\frac{[$37$]}{[$38$]} \]
であり,$\displaystyle r>\frac{[$39$]}{[$40$]}$を満たす.また,放物線$C_2$と直線$\ell$の交点の$x$座標は
\[ \pm \left( [$41$]r+\frac{[$42$]}{[$43$]} \right) \]
である.このとき,放物線$C_2$と直線$\ell$で囲まれた領域の面積は
\[ \frac{[$44$]}{[$45$]}r^3+[$46$]r^2+[$47$]r+\frac{[$48$]}{[$49$]} \]
である.
慶應義塾大学 私立 慶應義塾大学 2016年 第4問
座標平面上に$2$点$\mathrm{A}(-2,\ 4)$,$\mathrm{B}(4,\ 2)$および$2$つの直線$\ell:x+y=1$,$m:x-y=3$が与えられている.

(1)点$\mathrm{P}$が直線$\ell$上を動くとき,$\mathrm{AP}+\mathrm{PB}$が最小となる$\mathrm{P}$の座標は
\[ \left( \frac{[$50$][$51$][$52$]}{[$53$]},\ \frac{[$54$][$55$][$56$]}{[$57$]} \right) \]
である.
(2)点$\mathrm{P}$,$\mathrm{Q}$がそれぞれ直線$\ell,\ m$上を動くとき,$\mathrm{AP}+\mathrm{PQ}+\mathrm{QB}$が最小となる$\mathrm{P}$,$\mathrm{Q}$の座標はそれぞれ
\[ \left( \frac{[$58$][$59$]}{[$60$]},\ \frac{[$61$][$62$]}{[$63$]} \right),\quad \left( \frac{[$64$][$65$]}{[$66$]},\ \frac{[$67$][$68$]}{[$69$]} \right) \]
である.
立教大学 私立 立教大学 2016年 第2問
座標平面上における放物線$C:y=x^2-2x+1$と直線$\ell:y=x$の$2$つの交点のうち,$x$座標の値が小さい方の点を$\mathrm{A}(p,\ p)$とする.直線$\ell$上の点$\mathrm{B}(1,\ 1)$と点$\mathrm{A}$の間にある点$\mathrm{D}(q,\ q)$を通り$y$軸と平行な直線と放物線$C$との交点を$\mathrm{E}$とし,点$\mathrm{E}$を通り$x$軸と平行な直線と放物線$C$とのもう$1$つの交点を$\mathrm{F}$とする.このとき,次の問いに答えよ.

(1)$p$の値を求めよ.
(2)$\mathrm{EF}$の長さを$q$を用いて表せ.
(3)三角形$\mathrm{DEF}$の面積を$q$を用いて表せ.
(4)点$\mathrm{D}$が線分$\mathrm{AB}$上を動くとき,三角形$\mathrm{DEF}$の面積が最大となる$q$の値を求めよ.
(5)$q$が$(4)$で求めた値であるときの三角形$\mathrm{DEF}$の面積を求めよ.
立教大学 私立 立教大学 2016年 第2問
$a,\ b$を実数,$t$を正の実数とする.$\mathrm{O}$を原点とする座標平面上の$2$つの放物線
\[ C_1:y=-x^2,\quad C_2:y=x^2+ax+b \]
が,点$\mathrm{P}(t,\ -t^2)$において同じ接線$\ell$を持つとする.また,点$\mathrm{P}$における$C_1$の法線を$m$とする.このとき,次の問いに答えよ.

(1)$\ell$と$m$の方程式をそれぞれ$t$を用いて表せ.
(2)$a,\ b$をそれぞれ$t$を用いて表せ.
(3)$m$と$C_2$の軸および$C_2$で囲まれる図形の面積$S_1$を$t$を用いて表せ.
(4)$\ell$と$y$軸の交点を$\mathrm{Q}$とし,三角形$\mathrm{OPQ}$の面積を$S_2$とするとき,極限$\displaystyle \lim_{t \to \infty} \frac{S_1}{S_2}$の値を求めよ.
慶應義塾大学 私立 慶應義塾大学 2016年 第2問
$3$つの直線$x+2y-4=0$,$2x-y-2=0$,$x-y+5=0$によって作られる三角形を考える.

(1)三角形の各頂点からの距離の$2$乗和が最小になる点は$\displaystyle \left( \frac{[$19$][$20$]}{[$21$][$22$]},\ \frac{[$23$][$24$]}{[$25$][$26$]} \right)$である.
(2)三角形の各辺からの距離の$2$乗和が最小になる点は$\displaystyle \left( \frac{[$27$][$28$]}{[$29$][$30$]},\ \frac{[$31$][$32$]}{[$33$][$34$]} \right)$である.
慶應義塾大学 私立 慶應義塾大学 2016年 第5問
次の問いに答えよ.

(1)図のように大中小の円と直線が互いに接している.小円の半径は$4$寸,中円の半径は$9$寸であった.このとき,大円の半径は$[$55$][$56$]$寸である.(注意:図は原寸どおりではない.)
(図は省略)
(2)\begin{mawarikomi}{50mm}{
(図は省略)
}
図のように半径$4$寸の扇形$\mathrm{AOB}$と半径$1$寸の扇形$\mathrm{COD}$が重なっている.今$\displaystyle \cos \angle \mathrm{AOB}=\frac{5}{8}$とすると,弧$\koa{$\mathrm{AB}$}$と直線$\mathrm{AD}$,$\mathrm{BC}$に接する円の半径は
\[ \frac{[$57$][$58$]}{[$59$][$60$]} \left( [$61$][$62$]-\sqrt{[$63$][$64$]} \right) \]
寸である.(注意:図は原寸どおりではない.)
\end{mawarikomi}
名城大学 私立 名城大学 2016年 第2問
関数$\displaystyle f(x)=\frac{x^2}{2}-2 |x-1|+2$について,次の各問に答えよ.

(1)$y=f(x)$のグラフをかけ.
(2)$-4 \leqq x \leqq 2$のときの$f(x)$の最大値と最小値を求めよ.
(3)曲線$y=f(x)$と直線$y=x$で囲まれた$3$つの部分の面積の和を求めよ.
スポンサーリンク

「直線」とは・・・

 まだこのタグの説明は執筆されていません。